Skip to main content

Amino Acids and the Mitochondria

  • Chapter
Book cover Mitochondria

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

This chapter describes some of the important physiological functions of amino acids in the mitochondria and the alterations caused by specific pathologies. To some extent all of the featured items are dependent upon the movement of amino acids across the highly selective permeability barrier that is the inner mitochondrial membrane. The performance of this transport by specific carriers is the subject of the first section. Once inside the mitochondrial matrix the amino acids become involved in a bewildering number of critical metabolic pathways. The second section elaborates on two of the most significant namely: the malateaspartate shuttle essential for the transfer of reducing equivalents between the cytoplasm and the mitochondria; and the urea cycle, which is responsible for maintaining sub-toxic levels of ammonia. The final section covers the changes to mitochondrial amino acid metabolism that occur under different pathological conditions. In this case three examples have been chosen comprising ischemiareperfusion in heart, myocardial hypertrophy and the special relationship that exists between glutamine and cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlante A, Passarella S, Pierro P, Quagliariello E (1994) Proline transport in rat kidney mitochondria. Arch Biochem Biophys 309:139–148

    Article  PubMed  CAS  Google Scholar 

  • Baggio R, Emig FA, Christianson DW, Ash DE, Chakdar S, Rattan S (1999) Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor. J Pharmacol Exp Therapeut 290:1409–1416

    CAS  Google Scholar 

  • Bittl JA, Shine KI (1983) Protection of ischemic rabbit myocardium by glutamic acid. Am J Physiol 245:H406–H412

    PubMed  CAS  Google Scholar 

  • Borst P (1963) Hydrogen transport and transport metabolisms. In Karlson, P. (ed.), Functionelle und Morphologische Organisation der Zelle, Springer-Verlag, Berlin, pp. 137–158

    Google Scholar 

  • Bradford NM, McGivan JD (1973) Quantitative aspects of glutamate transport in rat liver mitochondria. Biochem J 134:1023–1029

    PubMed  CAS  Google Scholar 

  • Buckberg GD (1996) Invited editorial on “Effects of glutamate and aspartate on myocardial substrate oxidation during potassium arrest”. J Thorac Cardiovasc Surg 112:1661–1663.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (2001) Glutamate transporter and receptor function in disorders of ammonia metabolism. Ment Retard Dev Disabil Res Rev 7:276–279

    Article  PubMed  CAS  Google Scholar 

  • Cheung CW, Raijman L (1981) Arginine, mitochondrial arginase, and the control of carbamyl phosphate synthesis. Arch Biochem Biophys 209:643–649

    Article  PubMed  CAS  Google Scholar 

  • Colleluori DM, Morris SM Jr, Ash DE (2001) Expression purification and characterization of human type II arginase. Archiv Biochem Biophys 389:135–143

    Article  CAS  Google Scholar 

  • Dolinska M, Albrecht J (1998) L-Arginine uptake in rat cerebral mitochondria. Neurochem Int 33:233–236

    Article  PubMed  CAS  Google Scholar 

  • Eagle H, Barban S, Levy M, Schulz HO (1958) Utilization of carbohydrates by human cell cultures. J Biol Chem 233:551–558

    PubMed  CAS  Google Scholar 

  • Eigenbrodt E, Kallinowski F, Ott M, Mazurek S, Vaupel P (1998) Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors. Anticancer Res 18:3267–3274

    PubMed  CAS  Google Scholar 

  • El Alaoui-Talibi Z, Moravec J (1989) Limitation of long chain fatty acid oxidation in volume over-loaded rat hearts. Adv Exp Med Biol 248:491–497

    PubMed  CAS  Google Scholar 

  • Fiermonte G, Palmieri L, Todisco S, Agrimi G, Palmieri F, Walker JE (2002) Identification of the mitochondrial glutamate transporter. J Biol Chem 277: 19289–19294

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Fabre PM, Aledo JC, Del Castillo-Olivares A, Alonso FJ, Núñezde Castro I, Campos JA, Márquez J (2000) Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem J 345:365–375

    Article  PubMed  Google Scholar 

  • Griffiths JR (2001) Causes and consequences of hypoxia and acidity in tumor microenvironments. Bioessays 23:295–296

    Article  PubMed  CAS  Google Scholar 

  • Haas GS, DeBoer LWV, O’Keefe DD, Bodenhamer RM, Geffin MB, Drop LJ, Teplick RS, Daggett WM (1984) Reduction of postischemic myocardial dysfunction by substrate repletion during reperfusion. Circ 70(suppl I):I-65–I73

    CAS  Google Scholar 

  • Hacker HJ, Steinberg P, Bannasch P (1998) Pyruvate kinase isoenzyme shift from L-type to M2-type is a late event in hepatocarcinogenesis induced in rats by a choline-deficient/DL-ethionine-supplemented diet. Carcinogenesis 19:99-107

    Article  PubMed  CAS  Google Scholar 

  • Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A (2003) Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem 270:1887–1899

    Article  PubMed  CAS  Google Scholar 

  • Hutson SM, Fenstermacher D, Mahar C (1988) Role of mitochondrial transamination in branched chain amino acid metabolism. J Biol Chem 263:3618–3625

    PubMed  CAS  Google Scholar 

  • Hutson SM, Sweatt AJ, LaNoue KF (2005) Branched-chain amino acid metabolism: Implications for establishing safe intakes. J Nutr 135:1557S–1564S

    PubMed  CAS  Google Scholar 

  • Iacobazzi V, Palmieri F, Runswick MJ, Walker JE (1992) Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate gene. DNA Seq 3:79–88

    Article  PubMed  CAS  Google Scholar 

  • Ibsen KH (1977) Interrelationships and functions of the pyruvate kinase isoenzymes and their variant forms: a review. Cancer Res 37:341–353

    PubMed  CAS  Google Scholar 

  • Indiveri C, Abruzzo G, Stipani I, Palmieri F (1998) Identification and purification of the reconstitutively active glutamine carrier from rat kidney mitochondria. Biochem J 333:285–290

    PubMed  CAS  Google Scholar 

  • Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72:419–448

    PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflügers Archiv 447:469–479

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RS (2001) Structure and function of mitochondrial anion transport proteins. J Membrane Biol 179:165–183

    Article  CAS  Google Scholar 

  • King N, Lin H, McGivan JD, Suleiman MS (2004) Aspartate transporter activity in hypertrophic rat heart and ischaemia-reperfusion injury. J Physiol 556: 849–858

    Article  PubMed  CAS  Google Scholar 

  • King N, McGivan JD, Griffiths EJ, Halestrap AP, Suleiman MS (2003) Glutamate loading protects freshly isolated and perfused adult rat cardiomyocytes from intracellular ROS generation. J Mol Cell Cardiol 35: 975–984

    Article  PubMed  CAS  Google Scholar 

  • King N, Suleiman MS (2001) L-Leucine transport in rat heart under normal conditions and effect of simulated hypoxia. Mol Cell Biochem 221: 99–108

    Article  PubMed  CAS  Google Scholar 

  • King N, Williams H, McGivan JD, Suleiman MS (2001) Characteristics of L-aspartate transport and expression of EAAC-1 in sarcolemmal vesicles and isolated cells from rat heart. Cardiovasc Res 52: 84–94

    Article  PubMed  CAS  Google Scholar 

  • Kugler P (2004) Expression of glutamate transporters in rat cardiomyocytes and their localization in the T-tubular system. J Histochem. Cytochem 52:1385–1392

    Article  PubMed  CAS  Google Scholar 

  • LaNoue KF, Tischler ME (1974) Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter. J Biol Chem 249:7522–7528

    PubMed  CAS  Google Scholar 

  • LaNoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Ann Rev Biochem 48:871–922

    Article  PubMed  CAS  Google Scholar 

  • Lazar HL, Buckberg GD, Manganaro AM, Becker H (1980) Myocardial energy replenishment and reversal of ischemic damage by substrate enhancement of secondary blood cardioplegia with amino acids during reperfusion. J Thorac Cardiovasc Surg 80:350–359

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1951) Phosphorylation coupled to oxidation of dihydrodi-phosphopyridine nucleotide. J Biol Chem 190:345–359

    PubMed  CAS  Google Scholar 

  • Linder-Horowitz M, Knox WE, Morris HP (1969) Glutaminase activities and growth rates of rat hepatomas. Cancer Res 29:1195–1199

    PubMed  CAS  Google Scholar 

  • Mathews CK, Van Holde KE (1990) Biochemistry. Benjamin Cummings Publishing Company, Redwood City, California

    Google Scholar 

  • McKeehan WL (1982) Glycolysis, glutaminolysis and cell-proliferation. Cell Biol Int Rep 6: 635–650

    Article  PubMed  CAS  Google Scholar 

  • Medina MA (2001) Glutamine and cancer. J Nutr 131:2539S–2542S

    PubMed  CAS  Google Scholar 

  • Medina MA, Sánchez-Jiménez F, Márquez J, Queseda AR, Núñez de Castro I (1992) Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 113:1–15

    Article  PubMed  CAS  Google Scholar 

  • Montessuit C, Thorburn A (1999) Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiomyocytes by hypertrophic agonists. J Biol Chem 274: 9006–9012

    Article  PubMed  CAS  Google Scholar 

  • Nissim I, Luhovyy B, Horyn O, Daihin Y, Nissim I, Yudkoff M (2005) The role of mitochondrially bound arginase in the regulation of urea synthesis. J Biol Chem 280:17715–17724

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Pardo B, Lasorsa FM, Del Arco A, Kobayashi K, Lijima M, Runswick MJ, Walker JE, Saheki T, Satrústegui J, Palmieri F (2001) Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20: 5060–5069

    Article  PubMed  CAS  Google Scholar 

  • Paquette JC, Guérin PJ, Gauthier ER (2004) Rapid induction of the intrinsic apoptotic pathway by glutamine starvation. J Cell Physiol 202:912–921

    Article  CAS  Google Scholar 

  • Passarella S, Atlanate A, Valenti D, De Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343

    Article  PubMed  CAS  Google Scholar 

  • Pisarenko OI (1996) Mechanisms of myocardial protection by amino acids: facts and hypotheses. Clin Exptl Pharmacol 23:627–633

    Article  CAS  Google Scholar 

  • Pisarenko OI, Novikova EB, Serebryakova LI, Tskitishvili OV, Ivanov VE, Studneva IM (1985) Function and metabolism of dog heart in ischaemia and in subsequent reperfusion: effect of exogenous glutamic acid. Pflügers Archiv 405:377–383

    Article  PubMed  CAS  Google Scholar 

  • Pisarenko OI, Studneva IM, Shulzhenko VS, Korchazhkina OV, Kapelko VI (1995) Substrate accessibility to cytosolic aspartate aminotransferase improves posthypoxic recovery of isolated rat heart. Biochemical Mol Med 55:138–148

    Article  CAS  Google Scholar 

  • Porter RK (2000) Mammalian mitochondrial inner membrane cationic and neutral amino acid carriers. Biochim Biophys Acta 1459:356–362

    Article  PubMed  CAS  Google Scholar 

  • Queseda AR, Sánchez-Jiménez F, Perez-Rodriguez J, Márquez J, Medina MA, Núñez de Castro I (1988) Purification of phosphate-dependent glutaminase from isolated mitochondria of Ehrlich ascites tumor cells. Biochem J 255:1031–1036

    Google Scholar 

  • Ralphe JC, Bedell K, Segar JL, Scholz TD (2005) Correlation between myocardial malate/aspartate shuttle activity and EAAT1 protein expression in hyper- and hypothyroidism. Am J Physiol. 288:H2521–H2526

    CAS  Google Scholar 

  • Ralphe JC, Segar JL, Schutte BC, Scholz TD (2004) Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria. J Mol Cell Cardiol 37:33–41

    Article  PubMed  CAS  Google Scholar 

  • Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not glucose, is the main energy-source for Hela-cells. J Biol Chem 254:2669–2676

    PubMed  CAS  Google Scholar 

  • Rossi A, Lortet S (1996) Energy metabolism patterns in mammalian myocardium adapted to chronic pathophysiological conditions. Cardiovasc Res 31:163–171

    PubMed  CAS  Google Scholar 

  • Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64: 985–993

    Article  PubMed  CAS  Google Scholar 

  • Safer B (1975) The metabolic significance of the malate-aspartate cycle in heart. Circ Res 37, 527–533

    PubMed  CAS  Google Scholar 

  • Scholz TD, TenEyck CJ, Schutte BC (2000) Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria. J Mol Cell Cardiol 32:1–10

    Article  PubMed  CAS  Google Scholar 

  • Schwalb H, Yaroslavsky E, Borman JB, Uretzky G (1989) The effect of amino acids on the ischemic heart. J Thorac Cardiovasc Surg 98:551–556

    PubMed  CAS  Google Scholar 

  • Seymour AML, Eldar H, Radda GK (1990) Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study. Biochim Biophys Acta 1055:107–116

    Article  PubMed  CAS  Google Scholar 

  • Souba WW (1993) Glutamine and cancer. Ann. Surg 218:715–728

    Article  PubMed  CAS  Google Scholar 

  • Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Therapeut 89:29–46

    Article  CAS  Google Scholar 

  • Sveldjeholm R, Håkanson E, Vanhanen I (1995) Rationale for metabolic support with amino acids and glucose-insulin-potassium (GIK) in cardiac surgery. Ann Thorac Surg 59:S15–S22

    Article  Google Scholar 

  • Taegtmeyer H (1995) Metabolic support for the postischaemic heart. Lancet 345:1552–1555

    Article  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2004) Sulfur containing amino acids and human disease. Biomed Pharmacother 58:47–55

    Article  PubMed  CAS  Google Scholar 

  • Valdares JRE, Singhai RL, Parulekar MR, Beznak M (1969) Influence of aortic coarctation on myocardial glucose-6-phosphate dehydrogenase. Can J Physiol Pharmacol47:388–391

    Google Scholar 

  • Williams H, King N, Griffiths EJ, Suleiman MS (2001) Glutamate-loading stimulates metabolic flux and improves cell recovery following chemical hypoxia in isolated cardiomyocytes. J Mol Cell Cardiol 33: 2109–2119

    Article  PubMed  CAS  Google Scholar 

  • Williamson DH, Lund P, Krebs HA (1967) Redox state of free nicotinamide-adenine dinucleotide in cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    PubMed  CAS  Google Scholar 

  • Wu GY, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  Google Scholar 

  • Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil A, Li MX, Ushikai M, Lijima M, Kondo I, Saheki T (2000) Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinaemia. Hum Genet 107:537–545

    Article  PubMed  CAS  Google Scholar 

  • Zweier JL (1988) Measurement of superoxide-derived free radicals in the reperfused heart. J Biol Chem 263:1353–1357

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

King, N. (2007). Amino Acids and the Mitochondria. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_6

Download citation

Publish with us

Policies and ethics