Skip to main content

The Role of Mitochondria in Necrosis Following Myocardial Ischemia-Reperfusion

  • Chapter
Mitochondria

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

  • 2308 Accesses

Abstract

Using the recently adopted nomenclature of cell death (Levin et al. 1999), necrosis refers to cell death and disintegration, regardless of the pathway; the modifiers apoptotic and oncotic are used to refer to the mechanism of death. Traditionally cell death following ischemia has been thought to be primarily oncotic necrosis. As detailed in numerous reviews, during ischemia when the ATP falls to very low levels, the ion pumps cannot function resulting in a rise in Ca2+ which further consumes ATP (Farber and Gerson 1984; Jennings et al. 1990; Jennings and Reimer 1981; Jennings and Steenbergen 1985). The rise in Ca2+ during ischemia and reperfusion leads to mitochondrial Ca2+ accumulation, particularly during reperfusion when oxygen is reintroduced. Reintroduction of oxygen provides a terminal electron acceptor (oxygen) allowing electron transport to occur; however damage to electron transport chain can lead to increased mitochondrial generation of reactive oxygen species (ROS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J (1998) Apoptosis and myocardial infarction. Basic Res Cardiol 93 Suppl 3: 8–12

    Article  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–662

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92: 873–880

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90: 390–397

    Article  CAS  PubMed  Google Scholar 

  • Bartling B, Holtz J, Darmer D (1998) Contribution of myocyte apoptosis to myocardial infarction? Basic Res Cardiol 93: 71–84

    Article  CAS  PubMed  Google Scholar 

  • Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67: 234–244

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280: H2313–2320

    CAS  PubMed  Google Scholar 

  • Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97: 329–336

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302: 819–822

    Article  CAS  PubMed  Google Scholar 

  • Di Lisa F, Bernardi P (1998) Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 184: 379–391

    Article  PubMed  Google Scholar 

  • Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486 (pt 1): 1–13

    PubMed  Google Scholar 

  • Farber JL, Gerson RJ (1984) Mechanisms of cell injury with hepatotoxic chemicals. Pharmacol Rev 36: 71S–75S

    CAS  PubMed  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–1082

    CAS  PubMed  Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94: 1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25: 1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Halestrap A (2005) Biochemistry: a pore way to die. Nature 434: 578–579

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61: 372–385

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174: 167–172

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109: 1714–1717

    Article  CAS  PubMed  Google Scholar 

  • Imahashi K, Schneider MD, Steenbergen C, Murphy E (2004) Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 95: 734–741

    Article  CAS  PubMed  Google Scholar 

  • Jennings RB, Ganote CE (1976) Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res 38: I80–91

    Google Scholar 

  • Jennings RB, Ganote CE (1976) Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res 38: I80–91

    CAS  PubMed  Google Scholar 

  • Jennings RB, Murry CE, Steenbergen C Jr, Reimer KA (1990) Development of cell injury in sustained acute ischemia. Circulation 82: II2–12

    CAS  PubMed  Google Scholar 

  • Jennings RB, Reimer KA (1981) Lethal myocardial ischemic injury. Am J Pathol 102: 241–255

    CAS  PubMed  Google Scholar 

  • Jennings RB, Steenbergen C Jr (1985) Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol 47: 727–749

    Article  CAS  PubMed  Google Scholar 

  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113: 1535–1549

    CAS  PubMed  Google Scholar 

  • Karmazyn M (1988) Amiloride enhances postischemic ventricular recovery: possible role of Na+-H+ exchange. Am J Physiol 255: H608–615

    CAS  PubMed  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–642

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Mark W, Steurer W, Saks V, Usson Y, Margreiter R, Gnaiger E (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286: H1633–1641

    Article  CAS  PubMed  Google Scholar 

  • Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK, Maronpot RR, Trump BF (1999) The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicol Pathol 27: 484–490

    Article  CAS  PubMed  Google Scholar 

  • Leyssens A, Nowicky AV, Patterson L, Crompton M, Duchen MR (1996) The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. J Physiol 496 (Pt 1): 111–128

    CAS  PubMed  Google Scholar 

  • Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K, Murphy E, Robbins J (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112: 3451–3461

    Article  CAS  PubMed  Google Scholar 

  • Murphy E, Perlman M, London RE, Steenbergen C (1991) Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68: 1250–1258

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434: 652–658

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94: 420–432

    Article  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94: 53–59

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Schaper J (2005) Apoptosis: measurement and technical issues. J Mol Cell Cardiol 38: 15–20

    Article  CAS  PubMed  Google Scholar 

  • Rouslin W, Broge CW (1996) IF1 function in situ in uncoupler-challenged ischemic rabbit, rat, and pigeon hearts. J Biol Chem 271: 23638–23641

    Article  CAS  PubMed  Google Scholar 

  • Schneider MD (2005) Cyclophilin D: knocking on death’s door. Sci STKE 2005 pe26

    Google Scholar 

  • Shiraishi J, Tatsumi T, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Asayama J, Yaoi T, Fushiki S, Fliss H, Nakagawa M (2001) Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 281: H1637–1647

    CAS  PubMed  Google Scholar 

  • Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60: 700–707

    CAS  PubMed  Google Scholar 

  • Steenbergen C, Murphy E, Watts JA, London RE (1990) Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res 66: 135–146

    CAS  PubMed  Google Scholar 

  • Zamzami N, Larochette N, Kroemer G (2005) Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ 12 Suppl 2: 1478–1480

    Article  Google Scholar 

  • Zhu L, Yu Y, Chua BH, Ho YS, Kuo TH (2001) Regulation of sodium-calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. J Mol Cell Cardiol 33: 2135–2144

    Article  CAS  PubMed  Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20: 1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murphy, E., Steenbergen, C. (2007). The Role of Mitochondria in Necrosis Following Myocardial Ischemia-Reperfusion. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_13

Download citation

Publish with us

Policies and ethics