Mitochondria pp 271-290 | Cite as

The Apoptotic Mitochondrial Pathway – Modulators, Interventions and Clinical Implications

  • M-Saadeh Suleiman
  • Stephen W. Schaffer
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 2)


The orderly, energy-dependent death by apoptosis is an essential process that ensures the functional and structural integrity of a variety of adult tissues and organs. This process is associated with morphological and biochemical changes, culminating in nuclear DNA fragmentation and cell shrinkage but without the dramatic disruption of the sarcolemma that is the main feature of death by necrosis (Hetts 1998). However, to ensure the safe and effective physiological role of apoptosis, a number of regulators and controllers are involved. Loss of control over apoptosis can lead to pathological conditions (e.g. proliferative disorders and degenerative conditions (reviewed in (Hetts 1998)).


Cardiac Myocytes Ventricular Myocytes H9c2 Cell Apoptotic Death Cardiomyocyte Apoptosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ace inhibitor myocardial infarction collaborative group (1998) Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100000 patients in randomized trials. Circulation 97: 2202–2212Google Scholar
  2. Andreka P, Nadhazi Z, Muzes G, Sxantho G, Vandor L, Konya L, Turner MS, TulassayZ , Bishopric NH (2004a) Possible therapeutic targets in cardiac myocyte apoptosis. Curr Pharm Des 10(20): 2445–61PubMedGoogle Scholar
  3. Andreka P, Tran T, Webster KA, Bishopric NH (2004b) Nitric oxide and promotion of cardiac myocyte apoptosis. Mol Cell Biochem 263(1-2): 35–53PubMedGoogle Scholar
  4. Arnoult D, Gaume B, Karbowski M, Sharpe J, Cecconi F, Youle R (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22(17): 4385–4399PubMedGoogle Scholar
  5. Ascensao A, Magalhaes J, Soares JM, Ferreira R, Neuparth MJ, Marques F, Oliveira PJ, Duarte JA (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289(2): H722–31PubMedGoogle Scholar
  6. Baldi A, Abbate A, Bussani R, Patti G, Melfi R, Angelini A, Dobrina A, Rossiello R, Silvestri F, Baldi F, DiSciascio G (2002) Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34(2): 165–1PubMedGoogle Scholar
  7. Benjamin IJ, Schneider MD (2005) Learning from failure: congestive heart failure in the postgenomic age. J Clin Invest 115: 495–9PubMedGoogle Scholar
  8. Bialik S, Cryns VL, Drimcic A, Miyata S, Wollowick AL, Srinivasan A, Kitsis RN (1999) The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res 85: 403–14PubMedGoogle Scholar
  9. Bojunga J, Nowak D, Mitrou P S, Hoelzer D, Zeuzem S, Cchow KU (2004) Antioxidative treatment prevents activation of death-receptor- and mitochondrion-dependent apoptosis in the hearts of diabetic rats. Diabetologia 47: 2072–80PubMedGoogle Scholar
  10. Bortner CD, Cidlowski JA (1998) A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol 56: 1549–1559PubMedGoogle Scholar
  11. BorutaiteV, Brown GC (2003) Mitochondria in apoptosis of ischemic heart. FEBS Lett 541: 1–5PubMedGoogle Scholar
  12. Bratton S, Walker G, Srinivasula S, Sun X, Butterworth M, Alnemri E, Cohen G (2001) Recruitment, activation and retention of caspases-9 and-3 by Apaf-1 apoptosome and associated XIAP complexes. Embo J 20: 998–1009PubMedGoogle Scholar
  13. Byrne JA, Grieve DJ, Cave AC, Shan AM (2003) Oxidative stress and heart failure. Arch Mal Coeur Vaiss 96: 214–21PubMedGoogle Scholar
  14. Caldarone CA, Barner EW, Wang L, Karimi M, Mascio CE, Hammel JM, Segar J L, Du C, Scholz TD (2004) Apoptosis-related mitochondrial dysfunction in the early postoperative neonatal lamb heart. Ann Thorac Surg 78: 948–955PubMedGoogle Scholar
  15. Chen QM, Tu VC (2002) Apoptosis and heart failure: mechanisms and therapeutic implications. Am J Cardiovasc Drugs 2: 43–57PubMedGoogle Scholar
  16. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BHL (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280: H2313–H2320PubMedGoogle Scholar
  17. Cheng W, Li B, Kajstura J, Li P, Wolin M, Sonnenblick E, Hintze T, Olivetti G, Anversa P (1995) Stretch-induced programmed myocyte cell-death. J Clin Invest 96: 2247–2259PubMedGoogle Scholar
  18. Communal C, Singh K, Pimentel D, Colucci W (1998). Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98: 1329–1334PubMedGoogle Scholar
  19. Cook SA, Sugden PH, Clerk A. (1999) Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 85: 940–949PubMedGoogle Scholar
  20. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95: 957–970PubMedGoogle Scholar
  21. Czerski L, Nunez G (2004) Apoptosome formation and caspase activation: is it different in the heart? J Mol Cell Cardiol 37: 643–652PubMedGoogle Scholar
  22. d’Anglemont de Tassigny A, Souktani R, Henry P, Ghaleh B, Berdeaux A (2004) Volume-sensitive chloride channels (ICl,vol) mediated doxorubicin-induced apoptosis through apoptotic volume decrease in cardiomyocytes. Fundam Clin Pharmacol 18: 531–539PubMedGoogle Scholar
  23. de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA (2000) Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol 32: 53–63PubMedGoogle Scholar
  24. Deply E, Hatem SN, Andrieu N, De Vaumas C, Henaff M, Rucker-Martin C, Ajffrezou JP, Laurent G, Levade T, Mercadier JJ (1999) Doxorubicin induces slow ceramide accumulation and late apoptosis in cultured adult rat ventricular myocytes. Cardiovasc Res 43: 398–407Google Scholar
  25. Diez J, Fortuno M, Zalba G, Etayo J, Fortuno A, Ravassa S, Beaumont J (1998) Altered regulation of smooth muscle cell proliferation and apoptosis in small arteries of spontaneously hypertensive rats. Eur Heart J 19: G29–G33PubMedGoogle Scholar
  26. Doonan F, Cotter TG (2004) Apoptosis: A potential therapeutic target for retinal degenerations. Curr Neurovasc Res 1: 41–53PubMedGoogle Scholar
  27. Druzhyna NM, Hollensworth SB, Kelley MR, Wilson GL, Ledoux SP (2003) Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42: 370–378PubMedGoogle Scholar
  28. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius F C III, Nunez G (1999) ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85: e70–7PubMedGoogle Scholar
  29. Fischer U, Schulze-Osthoff K (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 57: 187–215PubMedGoogle Scholar
  30. Flather MD, Yusuf S, Kober L, Pfeffer M, Hall A, Murray G, Torppedersen C, Ball S, Pogue J, Moye L, Braunwald E (2000) Long-term ACE inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of dtaa from individual patients. The Lancet 355: 1575–1581Google Scholar
  31. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87: 1123–1132PubMedGoogle Scholar
  32. Fumarola C, Guidotti GG (2004) Stress-induced apoptosis: toward a symmetry with receptor-mediated cell death. Apoptosis 9: 77–82PubMedGoogle Scholar
  33. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease–a novel therapeutic target? FASEB J 16: 135–46PubMedGoogle Scholar
  34. Gonzalez A, Lopez B, Ravassa S, Querejeta R, Larman M, Diez J, Fortuno MA (2002) Stimulation of apoptosis in essential hypertension: potential role of angiotensin II. Hypertension 39: 75–80PubMedGoogle Scholar
  35. Gottlieb R, Burleson K, Kloner R, Babior B, Engler R (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94: 1621–1628PubMedGoogle Scholar
  36. Goussev A, Sharov VG, Shimoyama H, Tanimura M, Lesch M, Goldstein S, Sabbah HN (1998) Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol Heart Circ Physiol 275: H626–H631Google Scholar
  37. Green PS, Leeuwenburg C (2002) Mitochondrial dysfunction is an early indicator of doxorubucin-induced apoptosis. Biochim Biophys Acta 1588: 94–101PubMedGoogle Scholar
  38. Grishko V, Pastukh V, Solodushko V, Gillespie M, Azuma J, Schaffer S (2003) Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: role of DNA damage. Am J Physiol Heart Circ Physiol 285: H2364–H2372PubMedGoogle Scholar
  39. Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106: 2727–33PubMedGoogle Scholar
  40. Gurevich RM, Regula KM, Kirshenbaum LA (2001). Serpin protein CrmA suppresses hypoxia-mediated apoptosis of ventricular myocytes. Circulation 103: 1984–91PubMedGoogle Scholar
  41. Harada K, Sugaya T, Murakami K, Yazaki Y, Komuro I (1999) Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation 100: 2093–2099PubMedGoogle Scholar
  42. Heinrich H, Holz J (1998) Myocardial apoptosis in the overloaded and the aging heart: a critical role of mitochondria? Eur Cytokine Netw 9: 693–5PubMedGoogle Scholar
  43. Hetts SW (1998). To die or not to die: an overview of apoptosis and its role in disease. JAMA 279: 300–7PubMedGoogle Scholar
  44. Hollander JM, Lin KM, Scott BT, Dillmann WH (2003) Overexpression of PHGPx and HSP60/10 protects against ischemia/reoxygenation injury. Free Radic Biol Med 35: 742-–1PubMedGoogle Scholar
  45. Hu Y, Benedict M, Ding L, Nunez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. Embo J 18: 3586–3595PubMedGoogle Scholar
  46. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura KE, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88: 529–555PubMedGoogle Scholar
  47. James TN, St Martin E, Willis P W III, Lohr TO (1996) Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus node and internodal pathways. Circulation 93: 1424–1438PubMedGoogle Scholar
  48. Jang YM, Kendaiah S, Drew B, Phillips T, Selman C, Julian D, Leeuwenburg C (2004) Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats. FEBS Lett 577: 483–490PubMedGoogle Scholar
  49. Kajstura J, Cheng W, Sarabgarajan R, Li P, Li B, Nitahara J, Chapnick S, Reiss K, Olivetti G, Anversa P (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol Heart Circ Physiol 40: H1215–H1228Google Scholar
  50. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P (1997) Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 29: 859–870PubMedGoogle Scholar
  51. Kawaguchi H, Shin WS, Wang Y, Inukai M, Kato M, Matsuo-Okai Y, Sakamoto A, Uehara Y, Kaneda Y, Toyo-Oka T (1997) In vivo gene transfection of human endothelial cell nitric oxide synthase in cardiomyocytes causes apoptosis-like cell death. Identification using Sendai virus-coated liposomes. Circulation 95: 2441–7PubMedGoogle Scholar
  52. Khoynezhad A, Jalali Z, Tortolani AJ (2004) Apoptosis: pathophysiology and therapeutic implications for the cardiac surgeon. Ann Thorac Surg 78: 1109–18PubMedGoogle Scholar
  53. Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105: 2899–904PubMedGoogle Scholar
  54. Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, Young J, Mann DL (1998) Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol 30: 811–8PubMedGoogle Scholar
  55. Kumar D, Kirshenbaum L, Li T, Danelisen I, Singal P (1999) Apoptosis in isolated adult cardiomyocytes exposed to adriamycin. Heart in Stress 874: 156–168Google Scholar
  56. Leri A, Claudio P, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P (1998) Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101: 1326–1342PubMedGoogle Scholar
  57. Leri A, Liu Y, Li B, Fiordaliso F, Malhotra A, Latini R, Kajstura J, Anversa P (2000) Up-regulation of AT1 and AT2 receptors in postinfarcted hypertrophied myocytes and stretch-mediated apoptotic cell death. Am J Pathol 156: 1663–1672PubMedGoogle Scholar
  58. Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287: R1014–30PubMedGoogle Scholar
  59. Li L, Luo L, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95–99PubMedGoogle Scholar
  60. Li P, Nijhawan D, Budihardjo I, Srinivasula S, Ahmad M, Alnemri E, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489PubMedGoogle Scholar
  61. Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q (2004) Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res 14: 16–26PubMedGoogle Scholar
  62. Liu P, Xu B, Forman LJ, Carsia R, Hock CE (2002) L-NAME enhances microcirculatory congestion and cardiomyocyte apoptosis during myocardial ischemia-reperfusion in rats. Shock 17: 185–92PubMedGoogle Scholar
  63. Liu X, Chua CC, Gao J, Chen Z, Landy CLC, Hamdy R, Chua BHL (2004) Pifithrin-a protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286: H933–H939PubMedGoogle Scholar
  64. Logue SE, Gustafsson AB, Samali A, Gottlieb RA (2005) Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol 38: 21–33PubMedGoogle Scholar
  65. Lou H, Danielsen I, Singal PK (2005) Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 288: H1925–H1930PubMedGoogle Scholar
  66. Lundberg KC, Szweda LI (2004) Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion. Arch Biochem Biophys 432: 50–7PubMedGoogle Scholar
  67. Malhotra R, Brosius FC III (1999) Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 274: 12567–75PubMedGoogle Scholar
  68. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigom M, Fontaine G (1996) Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. Circulation 94: 2493–2493Google Scholar
  69. Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49: 17–26PubMedGoogle Scholar
  70. Mockridge JW, Benton EC, Andreeva LV, Latchman DS, Marber MS, Heads RJ (2000) IGF-1 regulates cardiac fibroblast apoptosis induced by osmotic stress. Biochem Biophys Res Commun 273: 322–7PubMedGoogle Scholar
  71. Morales MP, Galvez A, Eltit JM, Ocaranza P, Diaz-Araya G, Lavandero S (2000) IGF-1 regulates apoptosis of cardiac myocyte induced by osmotic-stress. Biochem Biophys Res Commun 270: 1029–35PubMedGoogle Scholar
  72. Mozaffari MS, Schaffer SW (2003) Effect of hypertension and hypertension-glucose intolerance on myocardial ischemic injury. Hypertension 42: 1042–1049PubMedGoogle Scholar
  73. Namiki A, Brogi E, Kearney M, Kim E, Wu T, Varticovski L, Isner J (1995) Hypoxia induces vascular endothelial growth-factor nRNA expression and protein-production in human endothelial-cells in-vitro. Circulation 92: 527–527Google Scholar
  74. Narula J, Haider N, Virmani R, DiSalvo T, Kolodgie F, Hajjar R, Schmidt U, Semigran M, Dec G, Khaw B (1996) Apoptosis in myocytes in end-stage heart failure. New England J Med 335: 1182–1189Google Scholar
  75. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 96: 8144–9PubMedGoogle Scholar
  76. Nitahara J, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert S, Kajstura J, Anversa P (1998) Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol 30: 519–535PubMedGoogle Scholar
  77. Nitobe J, Yamaguchi S, Okuyama S, Nozaki N, Sata M, Miyamoto T, Takeishi Y, Kubota I, Tomoike H (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57: 119–128PubMedGoogle Scholar
  78. Novogovodov SA, Szulc ZM, Luberto C, Jones JA, Bielawski J, Bielawska A, Hannun YA, Obeid LM (2005) Positively charged ceramide is a potent induced of mitochondrial permeabilization. J Biol Chem 280: 16096–16015Google Scholar
  79. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara J, Quaini E, DiLoreto C, Beltrami C, Krajweski S, Reed J, Anversa P (1997) Apoptosis in the failing human heart. New England J Med 336: 1131–1141Google Scholar
  80. Pacher P, Csordas G, Hajnoczky G (2001) Mitochondrial Ca2+ signaling and cardiac apoptosis. Biol Signals Recept 10: 200–23PubMedGoogle Scholar
  81. Qin F, Shite J, Mao W, Liang CS (2003) Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. Eur J Pharmacol 461: 149–58PubMedGoogle Scholar
  82. Rabkin S, Kong J (2000) Nifedipine does not induce but rather prevents apoptosis in cardiomyocytes. Eur J Pharmacol 388: 209–217PubMedGoogle Scholar
  83. Rayment N, Haven A, Madden B, Murday A, Trickey R, Shipley M, Davies M, Katz D (1999) Myocyte loss in chronic heart failure. J Pathol 188: 213–219PubMedGoogle Scholar
  84. Ravassa S, Fortuno MA, Gonzalez A, Lopez B, Zalba G, Fortuno A, Diez J (2000) Mechanisms of increased susceptibilityof angiotensin II-induced apoptosis in ventricular cardiomyocytes of spontaneously hypertensive rats. Hypertension 36: 1065–1071PubMedGoogle Scholar
  85. Razavi HM, Hamilton JA, Feng, Q (2005) Modulation of apoptosis by nitric oxide: implications in myocardial ischemia and heart failure. Pharmacol Ther 106: 147–62PubMedGoogle Scholar
  86. Regula KM, Ens K, Kirshenbaum LA (2002) Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91: 226–31PubMedGoogle Scholar
  87. Ricci C, Pastukh V, Schaffer SW (2005) Involvement of the mitochondrial permeability transition pore in angiotensin II-mediated apoptosis. Exp Clin Cardiol 10: 160–164PubMedGoogle Scholar
  88. Richter C, Schweizer M, Cossarizza A, Franceschi C (1996) Control of apoptosis by the cellular ATP level. FEBS Lett 378: 107–110PubMedGoogle Scholar
  89. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nature Rev Mol Cell Biol 5: 897–907Google Scholar
  90. Rossig L, Hoffmann J, Hugel B, Mallat Z, Haase A, Freyssinet JM, Tedgui A, Aicher A, Zeiher AM, Dimmeler S (2001) Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation 104: 2182–7PubMedGoogle Scholar
  91. Saito S, Hiroi Y, Zou Y, Aikawa R, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I (2000) Beta-adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275: 34528–33PubMedGoogle Scholar
  92. Saraste A, Pulkki K, Kallajoki M, Heikkila P, Laine P, Nieminen M, Mattila S, Parvinem M, VoipioPulkki L (1997) Cardiomyocyte apoptosis is observed in explanted failing human hearts with and without coronary artery disease. Circulation 96: 651–651Google Scholar
  93. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, VoipioPulkki L (1997) Apoptosis in human acute myocardial infarction. Circulation 95: 320–323PubMedGoogle Scholar
  94. Saraste A, VoipioPulkki L, Parvinen M, Pulkki K (1997) Apoptosis in the heart. New England J Med 336: 1025–1026Google Scholar
  95. Schaffer S, Ricci C, Pastukh V, Wilson G (2005) DNA damage-involvement in fatty acid-mediated apoptosis. J Mol Cell Cardiol 38, 859Google Scholar
  96. Scheubel RJ, Bartling B, Simm A, Silber RE, Drogaris K, Darmer D, Holtz J (2002) Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: fragile balance of myocyte survival? J Am Coll Cardiol 39: 481–8PubMedGoogle Scholar
  97. Sharov VG, Sabbah HN, Ali AS, Shimoyama H, Lesch M, Goldstein S (1997) Abnormalities of cardiocytes in regions bordering fibrous scars of dogs with heart failure. Int J Cardiol 60: 273–9PubMedGoogle Scholar
  98. Shizukuda Y, Buttrick P, Geenen D, Borczuk A, Kitsis R, Sonnenblick E (1998) beta-Adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. Am J Physiol Heart Circ Physiol 44: H961–H968Google Scholar
  99. Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8: 132–40PubMedGoogle Scholar
  100. Sugino H, Ozono R, Kurisu S, Matsuuura H, Ishida M, Oshima T, Kambe M, Teranishi Y, Masaki H, Matsubara H (2001) Apoptosis is not increased in myocardium overexpressing type 2 angiotensin II receptor in transgenic mice. Hypertension 37: 1394–1398PubMedGoogle Scholar
  101. Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther 89: 29–46PubMedGoogle Scholar
  102. Sun HY, Wang NP, Halkos ME, Kerendi F, Kin H, Wang RX, Guyton RA, Zhao ZQ (2004) Involvement of Na+/H+ exchanger in hypoxia/re-oxygenation-induced neonatal rat cardiomyocyte apoptosis. Eur J Pharmacol 486: 121–31PubMedGoogle Scholar
  103. Susin S, Lorenzo H, Zamzami N, Marzo I, Snow B, Brothers G, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett D, Aebersold R, Siderovski D, Penninger J, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446PubMedGoogle Scholar
  104. Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanova OP, Cannon PJ (1996) Apoptosis of cardiac myocytes during cardiac allograft rejection: relation to induction of nitric oxide synthase. Circulation 94: 1665–1673PubMedGoogle Scholar
  105. Takatani T, Takahashi K, Uozumi Y, Shikata E, Yamamoto Y, Ito T, Matsuda T, Schaffer SW, Fujio Y, Azuma J (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287: C949–53PubMedGoogle Scholar
  106. Tanaka K, Pracyk JB, Takeda K, Yu ZX, Ferrans V J, Deshpande SS, Ozaki M, Hwang PM, Lowenstein CJ, Irani K, Finkel T (1998) Expression of Id1 results in apoptosis of cardiac myocytes through a redox-dependent mechanism. J Biol Chem 273, 25922-8PubMedGoogle Scholar
  107. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M (1994) Hypoxia induces apoptosis with enhanced expression of fas antigen messenger-RNA in cultured neonatal rat cardiomyocytes. Circulation 90: 426–426Google Scholar
  108. Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Fushiki S, Fliss H, Nakagawa M (2003) Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res 59: 428–40PubMedGoogle Scholar
  109. Thornberry N, Lazebnik Y (1998) Caspases: Enemies within. Science 281: 1312–1316.PubMedGoogle Scholar
  110. Valen G (2003) The basic biology of apoptosis and its implications for cardiac function and viability. Ann Thorac Surg 75: S656–60PubMedGoogle Scholar
  111. Van Loo G, Saelens X, Van Gurp M, MacFarlane M, Martin S, Vandenabelle P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death and Differentiation 9: 1031–1042PubMedGoogle Scholar
  112. Von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99: 2934–41Google Scholar
  113. Wang GW, Klein JB, Kang YJ (2001) Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther 298: 461–468PubMedGoogle Scholar
  114. Wang GW, Zhou Z, Klein JB, Kang YJ (2001) Inhibition of hypoxia/reoxygenation-induced apoptosis in metallothionein-overexpressing cardiomyocytes. Am J Physiol Heart Circ Physiol 280: H2292–9PubMedGoogle Scholar
  115. Webster K, Discher D, Kaiser S, Hernandez O, Sato B, Bishopric N (1999) Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest 104: 239–252PubMedGoogle Scholar
  116. Yaoita H, Ogawa K, Maehara K, Maruyama Y (2000) Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc Res 45: 630–41PubMedGoogle Scholar
  117. Yue T, Sanjay K, Feng G, Louden C, Wang C, Gu J, Lee J, Feuerstein G, Ma X (1998) Inhibition of P38 MAP kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Naunyn-Schiedebergs Arch Pharmacol 358: R621–R621Google Scholar
  118. Zou H, Henzel W, Liu X., Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C-elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413PubMedGoogle Scholar
  119. Zou H, Li Y, Liu H, Wang X (1999) An APAF-1 center dot cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549–11556PubMedGoogle Scholar
  120. Zuurbier CJ, Eerbeek O, Meijer AJ (2005) Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution. Am J Physiol Heart Circ Physiol 289: H496–9PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M-Saadeh Suleiman
  • Stephen W. Schaffer

There are no affiliations available

Personalised recommendations