Mitochondria pp 241-269 | Cite as

The Mitochondrial Permeability Transition Pore – from Molecular Mechanism to Reperfusion Injury and Cardioprotection

  • Andrew P. Halestrap
  • Samatha J. Clarke
  • Igor Khalilin
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 2)


In most cells, the primary role played by the mitochondria is the provision of ATP through oxidative phosphorylation to support the numerous energy requiring processes. This is especially so in tissues such as the beating heart where the provision of ATP to meet the demands of muscle contraction and the maintenance of ionic homeostasis are especially heavy. Indeed, even under resting conditions, the heart cannot survive on glycolytic ATP alone and rapidly ceases to beat when oxidative phosphorylation is impaired by anoxia or ischemia. It comes as something of a surprise, therefore, to discover that within the mitochondria there exists a latent mechanism that, once activated, converts them from organelles that energise the cell to those that actively kill the cell via apoptosis or necrosis. This transition, reminiscent of the fictional Dr Jeckyll who turns into the murderous Mr Hyde, is mediated within the mitochondria by the opening of a non-specific pore in the mitochondrial inner membrane, known as the mitochondrial permeability transition pore (MPTP).


Reperfusion Injury Ischemic Precondition Mitochondrial Permeability Transition Mitochondrial Permeability Transition Pore Permeability Transition Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen DG, Xiao XH (2003) Role of the cardiac Na+ /H+exchanger during ischemia and reperfusion. Cardiovasc Res 57 : 934–941PubMedGoogle Scholar
  2. Al Nasser IA (1997) Prevention of adriamycin aglycone-inducedchanges of inner mitochondrial membrane permeability by Cyclosporin A. Med Sci Res 25 : 249–251Google Scholar
  3. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J (1998) Apoptosis and myocardial infarction. Basic Res Cardiol 93 : 8–12PubMedGoogle Scholar
  4. Argaud L, Gateau Roesch O, Chalabreysse L, Gomez L, Loufouat J, Thivolet Bejui F, Robert D, Ovize M (2004) Preconditioning delays Ca2+-induced mitochondrial permeability transition.Cardiovasc Res 61 : 115–122PubMedGoogle Scholar
  5. Argaud L, GateauRoesch O, Raisky O, Loufouat J, Robert D, Ovize M(2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111 : 194–197PubMedGoogle Scholar
  6. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical rolefor mitochondrial permeability transition in cell death. Nature 434: 658–662PubMedGoogle Scholar
  7. Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y,Bolli R, Cardwell EM, Ping PP (2003) Protein kinase C epsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92 : 873–880PubMedGoogle Scholar
  8. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 280 : 18558–18561PubMedGoogle Scholar
  9. Batandier C, Leverve X, Fontaine E (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol Chem 279 : 17197–17204PubMedGoogle Scholar
  10. Bernardi P (1999) Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev 79 : 1127–1155PubMedGoogle Scholar
  11. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di.Lisa F (1999) Mitochondria and cell death - Mechanistic aspects and methodological issues. Eur J Biochem 264 : 687–701PubMedGoogle Scholar
  12. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore - effect of protons and divalent cations. J Biol Chem 267 : 2934–2939PubMedGoogle Scholar
  13. Bernardi P, Veronese P, Petronilli V (1993) Modulation of the Mitochondrial Cyclosporin A-Sensitive Permeability Transition Pore .1. Evidence for 2 separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem 268 : 1005–1010PubMedGoogle Scholar
  14. Brenner C, Cadiou H, Vieira HLA, Zamzami N, Marzo I, Xie ZH, Leber B, Andrews D, Duclohier H, Reed JC, Kroemer G (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator Oncogene 19 : 329–336Google Scholar
  15. Broekemeier KM, Pfeiffer DR (1995) Inhibition of the mitochondrial permeability transition by cyclosporin a during long time frame experiments: Relationship between pore opening and the activity of mitochondrial phospho lipases. Biochemistry 34 : 16440–16449PubMedGoogle Scholar
  16. Brustovetsky N, Klingenberg M (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+.Biochemistry 35:8483-8488PubMedGoogle Scholar
  17. Brustovetsky N, Tropschug M, Heimpel S, Heidkamper D, Klingenberg M (2002) A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore. Biochemistry 41 : 11804–11811PubMedGoogle Scholar
  18. Cesura AM, Pinard E, Schubenel R, Goetschy V, Friedlein A, LangenH, Polcic P, Forte MA, Bernardi P, Kemp JA (2003) The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J Biol Chem 278 : 49812–49818PubMedGoogle Scholar
  19. Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277 : 34793–34799PubMedGoogle Scholar
  20. Connern CP, Halestrap AP (1992) Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J 284 : 381–385PubMedGoogle Scholar
  21. Connern CP, Halestrap AP (1994) Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J 302 : 321–324PubMedGoogle Scholar
  22. Connern CP, Halestrap AP (1996) Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to theinner mitochondrial membrane and sensitize the mitochondrial permeability transition to [Ca2+]. Biochemistry 35 : 8172–8180PubMedGoogle Scholar
  23. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV,Critz SD (2005) Protein kinase G transmits the cardio protective signal from cytosol to mitochondria. Circ Res 97 : 329–336PubMedGoogle Scholar
  24. Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem, 276 : 2313–2316PubMedGoogle Scholar
  25. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 : 233–249PubMedGoogle Scholar
  26. Crompton M (2000) Mitochondrial inter membrane junctional complexes and their role in cell death. J Physiol 529 : 11–21PubMedGoogle Scholar
  27. Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255 : 357–360PubMedGoogle Scholar
  28. Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258 : 729–735PubMedGoogle Scholar
  29. Cross HR, Clarke K, Opie LH, Radda GK (1995) Is lactate-induced myocardial ischemic injury mediated by decreased pH or increased intracellular lactate? J Mol Cell Cardiol 27 : 1369–1381PubMedGoogle Scholar
  30. Das M, Parker JE, Halestrap AP (2003) Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive K-ATP channels in rat mitochondria. J Physiol 547 : 893–902PubMedGoogle Scholar
  31. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47 : 446–456PubMedGoogle Scholar
  32. Dierks T, Salentin A, Heberger C, Kramer R (1990a) the Mitochondrial Aspartate/Glutamate and ADP/ATP Carrier switch from obligate counter exchange to unidirectional transport after modification by SH-reagents. Biochim Biophys Acta 1028 : 268–280PubMedGoogle Scholar
  33. Dierks T, Salentin A, Kramer R (1990b) Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents - Evidence for a preformed channel as a structural requirement of carrier-mediated transport. Biochim Biophys Acta 1028 : 281–288PubMedGoogle Scholar
  34. Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletionof mitochondrial and cytosolic NAD(+) and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276 : 2571–2575PubMedGoogle Scholar
  35. Dolce V, Scarcia P, Iacopetta D, Palmieri F (2005) A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution.FEBS Lett 579 : 633–637PubMedGoogle Scholar
  36. Doyle V, Virji S, Crompton M (1999) Evidence that cyclophilin-Aprotects cells against oxidative stress. Biochem J 341 : 127–132PubMedGoogle Scholar
  37. Duchen MR, Mcguinness O, Brown LA, Crompton M (1993) On the Involvement of a Cyclosporin-A Sensitive Mitochondrial Pore in Myocardial Reperfusion Injury. Cardiovasc Res 27 : 1790–1794PubMedGoogle Scholar
  38. Echtay KS, Winkler E, Frischmuth K, Klingenberg M (2001) Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q(Ubiquinone) . Proc Natl Acad Sci USA 98 : 1416–1421PubMedGoogle Scholar
  39. Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is anobligatory cofactor for uncoupling protein function. Nature 408 : 609–613PubMedGoogle Scholar
  40. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfusedrat myocardium. Circ Res 79 : 949–956PubMedGoogle Scholar
  41. Fontaine E, Bernardi P (1999) Progress on the mitochondrial permeability transition pore: Regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 31 : 335–345PubMedGoogle Scholar
  42. Friberg H, Wieloch T (2002) Mitochondrial permeability transitionin acute neuro degeneration. Biochimie 84 : 241–250PubMedGoogle Scholar
  43. Garlid KD, Dos Santos P, Xie ZJ, Costa ADT, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardio protection.Biochim Biophys Acta 1606 : 1–21PubMedGoogle Scholar
  44. Griffiths EJ, Halestrap AP (1991) Further evidence that cyclosporin-A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase -implications for the immuno suppressive and toxic effects of cyclosporin. Biochem J 274 : 611–614PubMedGoogle Scholar
  45. Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia reperfusion-induced damage in isolated rat hearts. J MolCell Cardiol 25: 1461–1469PubMedGoogle Scholar
  46. Griffiths E. J, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischemia, but open upon reper fusion. Biochem J 307 : 93–98PubMedGoogle Scholar
  47. Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, SternMD, Silverman HS (1998) Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res 39 : 423–433PubMedGoogle Scholar
  48. Griffiths EJ, Ocampo CJ, Savage JS, Stern MD, Silverman HS (2000) Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differential effects on mitochondrial calcium levels. Cell Calcium 27 : 87–95PubMedGoogle Scholar
  49. Gunter TE, Pfeiffer DR (1990) Mechanisms by Which Mitochondria Transport Calcium. Am J Physiol 258: C755–C786PubMedGoogle Scholar
  50. Halestrap A (2005) A pore way to die. Nature 434 : 578–579PubMedGoogle Scholar
  51. Halestrap AP (1991) Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7 - implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278 : 715–719PubMedGoogle Scholar
  52. Halestrap AP (2004) Dual role for the ADP/ATP translocator? Nature430: U1Google Scholar
  53. Halestrap AP, Brenner C (2003) The adenine nucleotide translocase:A central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10 : 1507–1525PubMedGoogle Scholar
  54. Halestrap AP, Clarke SJ, Javadov SA (2004) mitochondrial permeability transition pore opening during myocardial reperfusion- a target for cardio protection. Cardiovasc Res 61 : 372–385PubMedGoogle Scholar
  55. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischemia/reperfusion injury. Mol Cell Biochem 174 : 167–172PubMedGoogle Scholar
  56. Halestrap AP, Davidson AM (1990) Inhibition of Ca2+-induced large amplitude swelling of liver and heart mitochondria by Cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268 : 153–160PubMedGoogle Scholar
  57. Halestrap AP, Doran E, Gillespie JP, O’ Toole A (2000) Mitochondriaand cell death. Biochem Soc Trans 28 : 170–177PubMedGoogle Scholar
  58. Halestrap AP, Griffiths EJ, Connern CP (1993) Mitochondrial calcium handling and oxidative stress. Biochem Soc Trans 21 : 353–358PubMedGoogle Scholar
  59. Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366 : 79–94PubMedGoogle Scholar
  60. Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84 : 153–166PubMedGoogle Scholar
  61. Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress,thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272 : 3346–3354PubMedGoogle Scholar
  62. Hanley PJ, Drose S, Brandt U, Lareau RA, Banerjee AL, SrivastavaDK, Banaszak LJ, Barycki JJ, VanVeldhoven PP, Daut J (2005)5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids. J Physiol 562 : 307–318PubMedGoogle Scholar
  63. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J (2002) K-ATPchannel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542 : 735–741PubMedGoogle Scholar
  64. Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109 : 1714–1717PubMedGoogle Scholar
  65. Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischemia-reperfusion injury. Cardiovasc Res 60 : 617–625PubMedGoogle Scholar
  66. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55 : 534–543PubMedGoogle Scholar
  67. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005a) Is chemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol 288: H971–H976Google Scholar
  68. Hausenloy DJ, Tsang A, Yellon DM (2005b) The reperfusion injury salvage kinase pathway: A common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15 : 69–75PubMedGoogle Scholar
  69. Hausenloy DJ, Yellon DM (2004a) New directions for protecting theheart against ischemia-reperfusion injury: targeting theReperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61 : 448–460PubMedGoogle Scholar
  70. Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR (2004b) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol 287: H841–H849Google Scholar
  71. Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195 : 460–467PubMedGoogle Scholar
  72. He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512 : 1–7PubMedGoogle Scholar
  73. Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195 : 453–459PubMedGoogle Scholar
  74. Javadov S, Huang C, Kirshenbaum L, Karmazyn M (2005) NHE-1inhibition improves impaired mitochondrial permeability transition and respiratory function during post infarction remodelling in therat. J Mol Cell Cardiol 38 : 135–143PubMedGoogle Scholar
  75. Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KHH, Halestrap AP(2003) Ischemic preconditioning inhibits opening of mitochondrial permeability transition pores. in the reperfused rat heart. J Physiol 549 : 513–524PubMedGoogle Scholar
  76. Javadov SA, Lim KHH, Kerr PM, Suleiman MS, Angelini GD, Halestrap AP (2000) Protection of hearts from reperfusion injury by propofolis associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res 45 : 360–369PubMedGoogle Scholar
  77. Johnson N, Khan A, Virji S, Ward JM, Crompton M (1999) Import and processing of heart mitochondrial cyclophilin D. Eur J Biochem263 : 353–359PubMedGoogle Scholar
  78. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, ZimanBD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3 beta mediates convergence of protectionsignaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113 : 1535–1549PubMedGoogle Scholar
  79. Jung DW, Bradshaw PC, Pfeiffer DR (1997) Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J Biol Chem 272 : 21104–21112PubMedGoogle Scholar
  80. Karmazyn M, Sostaric JV, Gan XT (2001) The myocardial Na+/H+ exchanger - A potential the rapeutic target for the prevention of myocardial ischemic and reperfusion injury and attenuation of post infarction heart failure. Drugs 61: 375–389PubMedGoogle Scholar
  81. Katoh H, Nishigaki N, Hayashi H (2002) Diazoxide opens the Mitochondrial permeability transition pore and alters Ca2+ transients in rat ventricular myocytes. Circulation 105 : 2666–2671PubMedGoogle Scholar
  82. Kerr PM, Suleiman MS, Halestrap AP (1999) Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 276: H496–H502PubMedGoogle Scholar
  83. Khaliulin I, Schwalb H, Wang P, Houminer E, Grinberg L, Katzeff H,Borman JB, Powell SR (2004) Preconditioning improves postischemicmitochondrial function and diminishes oxidation of mitochondrialproteins. Free Radic Biol Med 37 : 1–9PubMedGoogle Scholar
  84. Kim JS, He L, Qian T, Lemasters JJ (2003) Role of the Mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr MolMed 3 : 527–535Google Scholar
  85. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F,Guyton RA, Vinten Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in theearly minutes of reperfusion. Cardiovasc Res 62 : 74–85PubMedGoogle Scholar
  86. Klingenberg M, Winkler E, Huang SG (1995) ADP/ATP carrier and uncoupling protein. Methods Enzymol 260 : 369–389PubMedGoogle Scholar
  87. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cal JY, Jones DP,MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427 : 461–465PubMedGoogle Scholar
  88. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med. 6 : 513–519PubMedGoogle Scholar
  89. Lareau S, Boyle AJ, Stewart LC, Deslauriers R, Hendry P, Keon WJ, Labow RS (1995) The role of magnesium in myocardial preservation. Magnes Res 8 : 85–97PubMedGoogle Scholar
  90. Lemasters JJ (1999) The mitochondrial permeability transition and the calcium, oxygen and pH paradoxes: one paradox after another. Cardiovasc Res 44 : 470–473PubMedGoogle Scholar
  91. Lemasters JJ, Trollinger DR, Qian T, Cascio WE, Ohata H (1999) Confocal imaging of Ca2+, pH, electrical potential, and membrane permeability in single living cells. Methods Enzymol 302 : 341–358PubMedGoogle Scholar
  92. LeQuoc K, LeQuoc D (1988) Involvement of the ADP/ATP carrier incalcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265 : 249–257Google Scholar
  93. Li YC, Ridefelt P, Wiklund L, Bjerneroth G (1997) Propofol induces a lowering of free cytosolic calcium in myocardial cells. Acta Anaesthesiol Scand 41 : 633–638PubMedGoogle Scholar
  94. Lim KHH, Halestrap AP, Angelini GD, Suleiman MS (2005) Propofol is cardioprotective in a clinically relevant model of normothermic blood cardio plegic arrest and cardiopulmonary by pass. Exp Biol Med 230 : 413–420Google Scholar
  95. Lim KHH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP(2002) The effects of ischemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol 545 : 961–974PubMedGoogle Scholar
  96. Mallet RT (2000) Pyruvate: Metabolic protector of cardiac performance. Proc Soc Exp Biol Med 223 : 136–148PubMedGoogle Scholar
  97. Manon S, Roucou X, Guerin M, Rigoulet M, Guerin B (1998) Minireview: Characterization of the yeast mitochondria unselective channel: A counterpart to the mammalian permeability transition pore? J Bioenerg Biomembr 30 : 419–429Google Scholar
  98. Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Bio 2 : 63–67Google Scholar
  99. Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G (1998) The permeability transition pore complex: A target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 187 : 1261–1271PubMedGoogle Scholar
  100. Maulik M, Maulik SK, Kumari R (1999) Importance of timing of magnesium administration: a study on the isolated ischemic-reperfused rat heart. Magnes Res 12 : 37–42PubMedGoogle Scholar
  101. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH (1992) Isolation of the mitochondrial benzodiazepine receptor - association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 89 : 3170–3174PubMedGoogle Scholar
  102. McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367 : 541–548PubMedGoogle Scholar
  103. Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res 71 : 605–613PubMedGoogle Scholar
  104. Murphy E (2004) Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardio protection. Circ Res 94 : 7–16PubMedGoogle Scholar
  105. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, YamagataH, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434 : 652–658PubMedGoogle Scholar
  106. Nazareth W, Yafei N, Crompton M (1991) Inhibition of Anoxia-Induced Injury in Heart Myocytes by Cyclosporin-A. J Mol Cell Cardiol 23 : 1351–1354PubMedGoogle Scholar
  107. Nicotera P, Leist M (1997) Mitochondrial signals and energy requirement in cell death. Cell Death Differ 4 : 516–516Google Scholar
  108. Novgorodov SA, Gudz TI, Brierley GP, Pfeiffer DR (1994) Magnesiumion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP. Arch Biochem Biophys 311 : 219–228PubMedGoogle Scholar
  109. Oldenburg O, Cohen MV, Downey JM (2003) Mitochondrial K-ATP channels in preconditioning. J Mol Cell Cardiol 35 : 569–575PubMedGoogle Scholar
  110. O’ Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardio protection. Circ Res 94 : 420–432Google Scholar
  111. Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447 : 689–709PubMedGoogle Scholar
  112. Pebay. Peyroula, E, Dahout. Gonzalez C, Kahn R, Trezeguet V, Lauquin GJM, Brandolin R (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426 : 39–44PubMedGoogle Scholar
  113. Periasamy M (2002) Calcineurin and the heartbeat, an evolving story. J Mol Cell Cardiol 34 : 259–262PubMedGoogle Scholar
  114. Rück A, Dolder M, Wallimann T, Brdiczka D (1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBSLett 426 : 97–101Google Scholar
  115. Rusnak F, Mertz P (2000) Calcineurin: Form and function. Physiol Rev 80 : 1483–1521PubMedGoogle Scholar
  116. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102 : 12005–12010PubMedGoogle Scholar
  117. Schreiber SL, Crabtree GR (1992) The mechanism of action of cyclosporin-A and FK506. Immunol Today 13 : 136–142PubMedGoogle Scholar
  118. Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM (2005) Mitochondrial permeability transition pore as a target for cardio protection in the human heart. Am J Physiol 289: H237–H242Google Scholar
  119. Singal PK, Iliskovic N, Li TM, Kumar D (1997) Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 11 : 931–936PubMedGoogle Scholar
  120. Sokolove PM (1990) Inhibition by cyclosporin A and butylated hydroxytoluene of the inner mitochondrial membrane permeability transition induced by Adriamycin aglycones. Biochem Pharmacol 40 : 2733–2736PubMedGoogle Scholar
  121. Suleiman MS (1994) New concepts in the cardioprotective action of magnesium and taurine during the calcium paradox and ischemia of the heart. Magnes Res 7:295-312PubMedGoogle Scholar
  122. Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Therapeut 89 : 29–46Google Scholar
  123. Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Johansen JV, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2(+) overload. Am J Physiol 288: H1900–H1908Google Scholar
  124. Szabo I, Bernardi P, Zoratti M (1992) Modulation of the Mitochondrial Megachannel by Divalent Cations and Protons. J Biol Chem 267 : 2940–2946PubMedGoogle Scholar
  125. Sztark F, Ichas F, Ouhabi R, Dabadie P, Mazat JP (1995) Effects ofthe anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: Direct pore inhibition and shift of the gating potential. FEBS Lett 368 : 101–104PubMedGoogle Scholar
  126. Tanveer A, Virji S, Andreeva L, Totty NF, Hsuan JJ, Ward JM, Crompton M (1996) Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur J Biochem 238 : 166–172PubMedGoogle Scholar
  127. Tonazzi A, Giangregorio N, Indiveri C, Palmieri F (2005) Identification by site-directed mutagenesis and chemical modification of three vicinal cysteine residues in rat mitochondrial carnitine/acylcarnitine transporter. J Biol Chem 280: 19607–19612PubMedGoogle Scholar
  128. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: A form of ‘’modified reperfusion” protects themyocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95 : 230–232PubMedGoogle Scholar
  129. Tsang A, Hausenloy DJ, Yellon DM (2005) Myocardial postconditioning: reperfusion injury revisited. Am J Physiol 289: H2–H7Google Scholar
  130. Vandenberg JI, Metcalfe JC, Grace AA (1993) Mechanisms of intracellular pH recovery following global ischemia in the perfused heart. Circ Res 72 : 993–1003PubMedGoogle Scholar
  131. Vieira HLA, Haouzi D, ElHamel C, Jacotot E, Belzacq AS, Brenner C, Kroemer G (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7 : 1146–1154PubMedGoogle Scholar
  132. Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ (2002) Inhibition of the mitochondrial permeability transition by the nonimmuno suppressive cyclosporin derivative NIM811. Mol Pharmacol 62 : 22–29PubMedGoogle Scholar
  133. Waldmeier PC, Zimmermann K, Qian T, Tintelnot Blomley M, Lemasters JJ (2003) Cyclophilin D as a drug target. Curr Med Chem 10 : 1485–1506PubMedGoogle Scholar
  134. Walter L, Nogueira V, Leverve X, Heitz MP, Bernardi P, Fontaine E (2000) Three classes of ubiquinone analogs regulate the Mitochondrial permeability transition pore through a common site. J Biol Chem 275 : 29521–29527PubMedGoogle Scholar
  135. Woodfield K, Rück A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the Mitochondrial permeability transition. Biochem J 336 : 287–290PubMedGoogle Scholar
  136. Woodfield KY, Price NT, Halestrap AP (1997) cDNA cloning of rat mitochondrial cyclophilin. Biochim Biophys Acta 1351 : 27–30PubMedGoogle Scholar
  137. Xu MF, Wang YG, Hirai K, Ayub A, Ashraf A (2001) Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. Am J Physiol 280: H899–H908Google Scholar
  138. Yellon DM, Downey JM (2003) Preconditioning the myocardium: From cellular physiology to clinical cardiology. Physiol Rev 83 : 1113–1151PubMedGoogle Scholar
  139. Zenke G, Strittmatter U, Fuchs S, Quesniaux VF, Brinkmann V, Schuler W, Zurini M, Enz A, Billich A, Sanglier JJ, Fehr T (2001) Sanglifehrin A, a novel cyclophilin-binding compound showing immuno suppressive activity with a new mechanism of action. J Immunol 166 : 7165–7171PubMedGoogle Scholar
  140. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinter Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol 285: H579–H588Google Scholar
  141. Zoratti M, Szabo I (1994) Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr 26 : 543–553PubMedGoogle Scholar
  142. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192 : 1001–1014PubMedGoogle Scholar
  143. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of is chemicmyocardium. Proc Natl Acad Sci USA 84 : 1404–1407PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Andrew P. Halestrap
  • Samatha J. Clarke
  • Igor Khalilin

There are no affiliations available

Personalised recommendations