Skip to main content
Book cover

Mitochondria pp 241–269Cite as

The Mitochondrial Permeability Transition Pore – from Molecular Mechanism to Reperfusion Injury and Cardioprotection

  • Chapter

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

In most cells, the primary role played by the mitochondria is the provision of ATP through oxidative phosphorylation to support the numerous energy requiring processes. This is especially so in tissues such as the beating heart where the provision of ATP to meet the demands of muscle contraction and the maintenance of ionic homeostasis are especially heavy. Indeed, even under resting conditions, the heart cannot survive on glycolytic ATP alone and rapidly ceases to beat when oxidative phosphorylation is impaired by anoxia or ischemia. It comes as something of a surprise, therefore, to discover that within the mitochondria there exists a latent mechanism that, once activated, converts them from organelles that energise the cell to those that actively kill the cell via apoptosis or necrosis. This transition, reminiscent of the fictional Dr Jeckyll who turns into the murderous Mr Hyde, is mediated within the mitochondria by the opening of a non-specific pore in the mitochondrial inner membrane, known as the mitochondrial permeability transition pore (MPTP).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen DG, Xiao XH (2003) Role of the cardiac Na+ /H+exchanger during ischemia and reperfusion. Cardiovasc Res 57 : 934–941

    PubMed  CAS  Google Scholar 

  • Al Nasser IA (1997) Prevention of adriamycin aglycone-inducedchanges of inner mitochondrial membrane permeability by Cyclosporin A. Med Sci Res 25 : 249–251

    CAS  Google Scholar 

  • Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J (1998) Apoptosis and myocardial infarction. Basic Res Cardiol 93 : 8–12

    PubMed  Google Scholar 

  • Argaud L, Gateau Roesch O, Chalabreysse L, Gomez L, Loufouat J, Thivolet Bejui F, Robert D, Ovize M (2004) Preconditioning delays Ca2+-induced mitochondrial permeability transition.Cardiovasc Res 61 : 115–122

    PubMed  CAS  Google Scholar 

  • Argaud L, GateauRoesch O, Raisky O, Loufouat J, Robert D, Ovize M(2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111 : 194–197

    PubMed  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical rolefor mitochondrial permeability transition in cell death. Nature 434: 658–662

    PubMed  CAS  Google Scholar 

  • Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y,Bolli R, Cardwell EM, Ping PP (2003) Protein kinase C epsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92 : 873–880

    PubMed  CAS  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 280 : 18558–18561

    PubMed  CAS  Google Scholar 

  • Batandier C, Leverve X, Fontaine E (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol Chem 279 : 17197–17204

    PubMed  CAS  Google Scholar 

  • Bernardi P (1999) Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev 79 : 1127–1155

    PubMed  CAS  Google Scholar 

  • Bernardi P, Scorrano L, Colonna R, Petronilli V, Di.Lisa F (1999) Mitochondria and cell death - Mechanistic aspects and methodological issues. Eur J Biochem 264 : 687–701

    PubMed  CAS  Google Scholar 

  • Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore - effect of protons and divalent cations. J Biol Chem 267 : 2934–2939

    PubMed  CAS  Google Scholar 

  • Bernardi P, Veronese P, Petronilli V (1993) Modulation of the Mitochondrial Cyclosporin A-Sensitive Permeability Transition Pore .1. Evidence for 2 separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem 268 : 1005–1010

    PubMed  CAS  Google Scholar 

  • Brenner C, Cadiou H, Vieira HLA, Zamzami N, Marzo I, Xie ZH, Leber B, Andrews D, Duclohier H, Reed JC, Kroemer G (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator Oncogene 19 : 329–336

    Google Scholar 

  • Broekemeier KM, Pfeiffer DR (1995) Inhibition of the mitochondrial permeability transition by cyclosporin a during long time frame experiments: Relationship between pore opening and the activity of mitochondrial phospho lipases. Biochemistry 34 : 16440–16449

    PubMed  CAS  Google Scholar 

  • Brustovetsky N, Klingenberg M (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+.Biochemistry 35:8483-8488

    PubMed  CAS  Google Scholar 

  • Brustovetsky N, Tropschug M, Heimpel S, Heidkamper D, Klingenberg M (2002) A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore. Biochemistry 41 : 11804–11811

    PubMed  CAS  Google Scholar 

  • Cesura AM, Pinard E, Schubenel R, Goetschy V, Friedlein A, LangenH, Polcic P, Forte MA, Bernardi P, Kemp JA (2003) The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J Biol Chem 278 : 49812–49818

    PubMed  CAS  Google Scholar 

  • Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277 : 34793–34799

    PubMed  CAS  Google Scholar 

  • Connern CP, Halestrap AP (1992) Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J 284 : 381–385

    PubMed  CAS  Google Scholar 

  • Connern CP, Halestrap AP (1994) Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel. Biochem J 302 : 321–324

    PubMed  CAS  Google Scholar 

  • Connern CP, Halestrap AP (1996) Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to theinner mitochondrial membrane and sensitize the mitochondrial permeability transition to [Ca2+]. Biochemistry 35 : 8172–8180

    PubMed  CAS  Google Scholar 

  • Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV,Critz SD (2005) Protein kinase G transmits the cardio protective signal from cytosol to mitochondria. Circ Res 97 : 329–336

    PubMed  CAS  Google Scholar 

  • Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem, 276 : 2313–2316

    PubMed  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 : 233–249

    PubMed  CAS  Google Scholar 

  • Crompton M (2000) Mitochondrial inter membrane junctional complexes and their role in cell death. J Physiol 529 : 11–21

    PubMed  CAS  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255 : 357–360

    PubMed  CAS  Google Scholar 

  • Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258 : 729–735

    PubMed  CAS  Google Scholar 

  • Cross HR, Clarke K, Opie LH, Radda GK (1995) Is lactate-induced myocardial ischemic injury mediated by decreased pH or increased intracellular lactate? J Mol Cell Cardiol 27 : 1369–1381

    PubMed  CAS  Google Scholar 

  • Das M, Parker JE, Halestrap AP (2003) Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive K-ATP channels in rat mitochondria. J Physiol 547 : 893–902

    PubMed  CAS  Google Scholar 

  • Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47 : 446–456

    PubMed  CAS  Google Scholar 

  • Dierks T, Salentin A, Heberger C, Kramer R (1990a) the Mitochondrial Aspartate/Glutamate and ADP/ATP Carrier switch from obligate counter exchange to unidirectional transport after modification by SH-reagents. Biochim Biophys Acta 1028 : 268–280

    PubMed  CAS  Google Scholar 

  • Dierks T, Salentin A, Kramer R (1990b) Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents - Evidence for a preformed channel as a structural requirement of carrier-mediated transport. Biochim Biophys Acta 1028 : 281–288

    PubMed  CAS  Google Scholar 

  • Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletionof mitochondrial and cytosolic NAD(+) and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276 : 2571–2575

    PubMed  CAS  Google Scholar 

  • Dolce V, Scarcia P, Iacopetta D, Palmieri F (2005) A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution.FEBS Lett 579 : 633–637

    PubMed  CAS  Google Scholar 

  • Doyle V, Virji S, Crompton M (1999) Evidence that cyclophilin-Aprotects cells against oxidative stress. Biochem J 341 : 127–132

    PubMed  CAS  Google Scholar 

  • Duchen MR, Mcguinness O, Brown LA, Crompton M (1993) On the Involvement of a Cyclosporin-A Sensitive Mitochondrial Pore in Myocardial Reperfusion Injury. Cardiovasc Res 27 : 1790–1794

    PubMed  CAS  Google Scholar 

  • Echtay KS, Winkler E, Frischmuth K, Klingenberg M (2001) Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q(Ubiquinone) . Proc Natl Acad Sci USA 98 : 1416–1421

    PubMed  CAS  Google Scholar 

  • Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is anobligatory cofactor for uncoupling protein function. Nature 408 : 609–613

    PubMed  CAS  Google Scholar 

  • Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfusedrat myocardium. Circ Res 79 : 949–956

    PubMed  CAS  Google Scholar 

  • Fontaine E, Bernardi P (1999) Progress on the mitochondrial permeability transition pore: Regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 31 : 335–345

    PubMed  CAS  Google Scholar 

  • Friberg H, Wieloch T (2002) Mitochondrial permeability transitionin acute neuro degeneration. Biochimie 84 : 241–250

    PubMed  CAS  Google Scholar 

  • Garlid KD, Dos Santos P, Xie ZJ, Costa ADT, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardio protection.Biochim Biophys Acta 1606 : 1–21

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1991) Further evidence that cyclosporin-A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase -implications for the immuno suppressive and toxic effects of cyclosporin. Biochem J 274 : 611–614

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia reperfusion-induced damage in isolated rat hearts. J MolCell Cardiol 25: 1461–1469

    PubMed  CAS  Google Scholar 

  • Griffiths E. J, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischemia, but open upon reper fusion. Biochem J 307 : 93–98

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, SternMD, Silverman HS (1998) Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res 39 : 423–433

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Ocampo CJ, Savage JS, Stern MD, Silverman HS (2000) Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differential effects on mitochondrial calcium levels. Cell Calcium 27 : 87–95

    PubMed  CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by Which Mitochondria Transport Calcium. Am J Physiol 258: C755–C786

    PubMed  CAS  Google Scholar 

  • Halestrap A (2005) A pore way to die. Nature 434 : 578–579

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1991) Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7 - implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278 : 715–719

    PubMed  CAS  Google Scholar 

  • Halestrap AP (2004) Dual role for the ADP/ATP translocator? Nature430: U1

    Google Scholar 

  • Halestrap AP, Brenner C (2003) The adenine nucleotide translocase:A central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10 : 1507–1525

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) mitochondrial permeability transition pore opening during myocardial reperfusion- a target for cardio protection. Cardiovasc Res 61 : 372–385

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischemia/reperfusion injury. Mol Cell Biochem 174 : 167–172

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Davidson AM (1990) Inhibition of Ca2+-induced large amplitude swelling of liver and heart mitochondria by Cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268 : 153–160

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Doran E, Gillespie JP, O’ Toole A (2000) Mitochondriaand cell death. Biochem Soc Trans 28 : 170–177

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Griffiths EJ, Connern CP (1993) Mitochondrial calcium handling and oxidative stress. Biochem Soc Trans 21 : 353–358

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366 : 79–94

    PubMed  CAS  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84 : 153–166

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress,thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272 : 3346–3354

    PubMed  CAS  Google Scholar 

  • Hanley PJ, Drose S, Brandt U, Lareau RA, Banerjee AL, SrivastavaDK, Banaszak LJ, Barycki JJ, VanVeldhoven PP, Daut J (2005)5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids. J Physiol 562 : 307–318

    PubMed  CAS  Google Scholar 

  • Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J (2002) K-ATPchannel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542 : 735–741

    PubMed  CAS  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109 : 1714–1717

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischemia-reperfusion injury. Cardiovasc Res 60 : 617–625

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55 : 534–543

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005a) Is chemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol 288: H971–H976

    CAS  Google Scholar 

  • Hausenloy DJ, Tsang A, Yellon DM (2005b) The reperfusion injury salvage kinase pathway: A common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15 : 69–75

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM (2004a) New directions for protecting theheart against ischemia-reperfusion injury: targeting theReperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61 : 448–460

    PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR (2004b) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol 287: H841–H849

    CAS  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195 : 460–467

    PubMed  CAS  Google Scholar 

  • He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512 : 1–7

    PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195 : 453–459

    PubMed  CAS  Google Scholar 

  • Javadov S, Huang C, Kirshenbaum L, Karmazyn M (2005) NHE-1inhibition improves impaired mitochondrial permeability transition and respiratory function during post infarction remodelling in therat. J Mol Cell Cardiol 38 : 135–143

    PubMed  CAS  Google Scholar 

  • Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KHH, Halestrap AP(2003) Ischemic preconditioning inhibits opening of mitochondrial permeability transition pores. in the reperfused rat heart. J Physiol 549 : 513–524

    PubMed  CAS  Google Scholar 

  • Javadov SA, Lim KHH, Kerr PM, Suleiman MS, Angelini GD, Halestrap AP (2000) Protection of hearts from reperfusion injury by propofolis associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res 45 : 360–369

    PubMed  CAS  Google Scholar 

  • Johnson N, Khan A, Virji S, Ward JM, Crompton M (1999) Import and processing of heart mitochondrial cyclophilin D. Eur J Biochem263 : 353–359

    PubMed  CAS  Google Scholar 

  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, ZimanBD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3 beta mediates convergence of protectionsignaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113 : 1535–1549

    PubMed  CAS  Google Scholar 

  • Jung DW, Bradshaw PC, Pfeiffer DR (1997) Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J Biol Chem 272 : 21104–21112

    PubMed  CAS  Google Scholar 

  • Karmazyn M, Sostaric JV, Gan XT (2001) The myocardial Na+/H+ exchanger - A potential the rapeutic target for the prevention of myocardial ischemic and reperfusion injury and attenuation of post infarction heart failure. Drugs 61: 375–389

    PubMed  CAS  Google Scholar 

  • Katoh H, Nishigaki N, Hayashi H (2002) Diazoxide opens the Mitochondrial permeability transition pore and alters Ca2+ transients in rat ventricular myocytes. Circulation 105 : 2666–2671

    PubMed  CAS  Google Scholar 

  • Kerr PM, Suleiman MS, Halestrap AP (1999) Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 276: H496–H502

    PubMed  CAS  Google Scholar 

  • Khaliulin I, Schwalb H, Wang P, Houminer E, Grinberg L, Katzeff H,Borman JB, Powell SR (2004) Preconditioning improves postischemicmitochondrial function and diminishes oxidation of mitochondrialproteins. Free Radic Biol Med 37 : 1–9

    PubMed  CAS  Google Scholar 

  • Kim JS, He L, Qian T, Lemasters JJ (2003) Role of the Mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr MolMed 3 : 527–535

    CAS  Google Scholar 

  • Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F,Guyton RA, Vinten Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in theearly minutes of reperfusion. Cardiovasc Res 62 : 74–85

    PubMed  CAS  Google Scholar 

  • Klingenberg M, Winkler E, Huang SG (1995) ADP/ATP carrier and uncoupling protein. Methods Enzymol 260 : 369–389

    PubMed  CAS  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cal JY, Jones DP,MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427 : 461–465

    PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med. 6 : 513–519

    PubMed  CAS  Google Scholar 

  • Lareau S, Boyle AJ, Stewart LC, Deslauriers R, Hendry P, Keon WJ, Labow RS (1995) The role of magnesium in myocardial preservation. Magnes Res 8 : 85–97

    PubMed  CAS  Google Scholar 

  • Lemasters JJ (1999) The mitochondrial permeability transition and the calcium, oxygen and pH paradoxes: one paradox after another. Cardiovasc Res 44 : 470–473

    PubMed  CAS  Google Scholar 

  • Lemasters JJ, Trollinger DR, Qian T, Cascio WE, Ohata H (1999) Confocal imaging of Ca2+, pH, electrical potential, and membrane permeability in single living cells. Methods Enzymol 302 : 341–358

    PubMed  CAS  Google Scholar 

  • LeQuoc K, LeQuoc D (1988) Involvement of the ADP/ATP carrier incalcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265 : 249–257

    CAS  Google Scholar 

  • Li YC, Ridefelt P, Wiklund L, Bjerneroth G (1997) Propofol induces a lowering of free cytosolic calcium in myocardial cells. Acta Anaesthesiol Scand 41 : 633–638

    PubMed  CAS  Google Scholar 

  • Lim KHH, Halestrap AP, Angelini GD, Suleiman MS (2005) Propofol is cardioprotective in a clinically relevant model of normothermic blood cardio plegic arrest and cardiopulmonary by pass. Exp Biol Med 230 : 413–420

    CAS  Google Scholar 

  • Lim KHH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP(2002) The effects of ischemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol 545 : 961–974

    PubMed  CAS  Google Scholar 

  • Mallet RT (2000) Pyruvate: Metabolic protector of cardiac performance. Proc Soc Exp Biol Med 223 : 136–148

    PubMed  CAS  Google Scholar 

  • Manon S, Roucou X, Guerin M, Rigoulet M, Guerin B (1998) Minireview: Characterization of the yeast mitochondria unselective channel: A counterpart to the mammalian permeability transition pore? J Bioenerg Biomembr 30 : 419–429

    Google Scholar 

  • Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Bio 2 : 63–67

    CAS  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G (1998) The permeability transition pore complex: A target for apoptosis regulation by caspases and Bcl-2-related proteins. J Exp Med 187 : 1261–1271

    PubMed  CAS  Google Scholar 

  • Maulik M, Maulik SK, Kumari R (1999) Importance of timing of magnesium administration: a study on the isolated ischemic-reperfused rat heart. Magnes Res 12 : 37–42

    PubMed  CAS  Google Scholar 

  • McEnery MW, Snowman AM, Trifiletti RR, Snyder SH (1992) Isolation of the mitochondrial benzodiazepine receptor - association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 89 : 3170–3174

    PubMed  CAS  Google Scholar 

  • McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367 : 541–548

    PubMed  CAS  Google Scholar 

  • Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res 71 : 605–613

    PubMed  CAS  Google Scholar 

  • Murphy E (2004) Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardio protection. Circ Res 94 : 7–16

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, YamagataH, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434 : 652–658

    PubMed  CAS  Google Scholar 

  • Nazareth W, Yafei N, Crompton M (1991) Inhibition of Anoxia-Induced Injury in Heart Myocytes by Cyclosporin-A. J Mol Cell Cardiol 23 : 1351–1354

    PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M (1997) Mitochondrial signals and energy requirement in cell death. Cell Death Differ 4 : 516–516

    Google Scholar 

  • Novgorodov SA, Gudz TI, Brierley GP, Pfeiffer DR (1994) Magnesiumion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP. Arch Biochem Biophys 311 : 219–228

    PubMed  CAS  Google Scholar 

  • Oldenburg O, Cohen MV, Downey JM (2003) Mitochondrial K-ATP channels in preconditioning. J Mol Cell Cardiol 35 : 569–575

    PubMed  CAS  Google Scholar 

  • O’ Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardio protection. Circ Res 94 : 420–432

    Google Scholar 

  • Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447 : 689–709

    PubMed  CAS  Google Scholar 

  • Pebay. Peyroula, E, Dahout. Gonzalez C, Kahn R, Trezeguet V, Lauquin GJM, Brandolin R (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426 : 39–44

    PubMed  CAS  Google Scholar 

  • Periasamy M (2002) Calcineurin and the heartbeat, an evolving story. J Mol Cell Cardiol 34 : 259–262

    PubMed  CAS  Google Scholar 

  • Rück A, Dolder M, Wallimann T, Brdiczka D (1998) Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBSLett 426 : 97–101

    Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: Form and function. Physiol Rev 80 : 1483–1521

    PubMed  CAS  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102 : 12005–12010

    PubMed  CAS  Google Scholar 

  • Schreiber SL, Crabtree GR (1992) The mechanism of action of cyclosporin-A and FK506. Immunol Today 13 : 136–142

    PubMed  CAS  Google Scholar 

  • Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM (2005) Mitochondrial permeability transition pore as a target for cardio protection in the human heart. Am J Physiol 289: H237–H242

    CAS  Google Scholar 

  • Singal PK, Iliskovic N, Li TM, Kumar D (1997) Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 11 : 931–936

    PubMed  CAS  Google Scholar 

  • Sokolove PM (1990) Inhibition by cyclosporin A and butylated hydroxytoluene of the inner mitochondrial membrane permeability transition induced by Adriamycin aglycones. Biochem Pharmacol 40 : 2733–2736

    PubMed  CAS  Google Scholar 

  • Suleiman MS (1994) New concepts in the cardioprotective action of magnesium and taurine during the calcium paradox and ischemia of the heart. Magnes Res 7:295-312

    PubMed  CAS  Google Scholar 

  • Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Therapeut 89 : 29–46

    CAS  Google Scholar 

  • Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Johansen JV, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2(+) overload. Am J Physiol 288: H1900–H1908

    CAS  Google Scholar 

  • Szabo I, Bernardi P, Zoratti M (1992) Modulation of the Mitochondrial Megachannel by Divalent Cations and Protons. J Biol Chem 267 : 2940–2946

    PubMed  CAS  Google Scholar 

  • Sztark F, Ichas F, Ouhabi R, Dabadie P, Mazat JP (1995) Effects ofthe anaesthetic propofol on the calcium-induced permeability transition of rat heart mitochondria: Direct pore inhibition and shift of the gating potential. FEBS Lett 368 : 101–104

    PubMed  CAS  Google Scholar 

  • Tanveer A, Virji S, Andreeva L, Totty NF, Hsuan JJ, Ward JM, Crompton M (1996) Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur J Biochem 238 : 166–172

    PubMed  CAS  Google Scholar 

  • Tonazzi A, Giangregorio N, Indiveri C, Palmieri F (2005) Identification by site-directed mutagenesis and chemical modification of three vicinal cysteine residues in rat mitochondrial carnitine/acylcarnitine transporter. J Biol Chem 280: 19607–19612

    PubMed  CAS  Google Scholar 

  • Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: A form of ‘’modified reperfusion” protects themyocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95 : 230–232

    PubMed  CAS  Google Scholar 

  • Tsang A, Hausenloy DJ, Yellon DM (2005) Myocardial postconditioning: reperfusion injury revisited. Am J Physiol 289: H2–H7

    CAS  Google Scholar 

  • Vandenberg JI, Metcalfe JC, Grace AA (1993) Mechanisms of intracellular pH recovery following global ischemia in the perfused heart. Circ Res 72 : 993–1003

    PubMed  CAS  Google Scholar 

  • Vieira HLA, Haouzi D, ElHamel C, Jacotot E, Belzacq AS, Brenner C, Kroemer G (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7 : 1146–1154

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ (2002) Inhibition of the mitochondrial permeability transition by the nonimmuno suppressive cyclosporin derivative NIM811. Mol Pharmacol 62 : 22–29

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Zimmermann K, Qian T, Tintelnot Blomley M, Lemasters JJ (2003) Cyclophilin D as a drug target. Curr Med Chem 10 : 1485–1506

    PubMed  CAS  Google Scholar 

  • Walter L, Nogueira V, Leverve X, Heitz MP, Bernardi P, Fontaine E (2000) Three classes of ubiquinone analogs regulate the Mitochondrial permeability transition pore through a common site. J Biol Chem 275 : 29521–29527

    PubMed  CAS  Google Scholar 

  • Woodfield K, Rück A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the Mitochondrial permeability transition. Biochem J 336 : 287–290

    PubMed  CAS  Google Scholar 

  • Woodfield KY, Price NT, Halestrap AP (1997) cDNA cloning of rat mitochondrial cyclophilin. Biochim Biophys Acta 1351 : 27–30

    PubMed  CAS  Google Scholar 

  • Xu MF, Wang YG, Hirai K, Ayub A, Ashraf A (2001) Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. Am J Physiol 280: H899–H908

    CAS  Google Scholar 

  • Yellon DM, Downey JM (2003) Preconditioning the myocardium: From cellular physiology to clinical cardiology. Physiol Rev 83 : 1113–1151

    PubMed  CAS  Google Scholar 

  • Zenke G, Strittmatter U, Fuchs S, Quesniaux VF, Brinkmann V, Schuler W, Zurini M, Enz A, Billich A, Sanglier JJ, Fehr T (2001) Sanglifehrin A, a novel cyclophilin-binding compound showing immuno suppressive activity with a new mechanism of action. J Immunol 166 : 7165–7171

    PubMed  CAS  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinter Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol 285: H579–H588

    CAS  Google Scholar 

  • Zoratti M, Szabo I (1994) Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr 26 : 543–553

    PubMed  CAS  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192 : 1001–1014

    PubMed  CAS  Google Scholar 

  • Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of is chemicmyocardium. Proc Natl Acad Sci USA 84 : 1404–1407

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Halestrap, A.P., Clarke, S.J., Khalilin, I. (2007). The Mitochondrial Permeability Transition Pore – from Molecular Mechanism to Reperfusion Injury and Cardioprotection. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_11

Download citation

Publish with us

Policies and ethics