Mitochondria pp 221-238 | Cite as

Mitochondrial Ion Channels

  • Brian O’Rourke
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 2)


The maintenance of a large electrochemical driving force for protons across the mitochondrial inner membrane is essential for the production of ATP through oxidative phosphorylation. At face value, the opening of energy dissipating ion channels in the mitochondria would be unfavorable for energy transduction, but a wealth of evidence now indicates that selective (and some non-selective) ion channels may become active under various physiological or pathophysiological conditions.


Mitochondrial Permeability Transition Pore Voltage Dependent Anion Channel Physiol Heart Circ Mitochondrial KATP Channel Membrane Anion Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akar FG, Aon MA, Tomaselli GF, O’Rourke B (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115: 3527–35PubMedCrossRefGoogle Scholar
  2. Aon MA, Cortassa S, Akar FG, O’Rourke B (2006) Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta 1762: 232–40Google Scholar
  3. Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278: 44735℃44PubMedCrossRefGoogle Scholar
  4. Aon MA, Cortassa S, O’Rourke B (2004) Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci U S A 101: 4447–52PubMedCrossRefGoogle Scholar
  5. Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci USA 101: 11880–5PubMedCrossRefGoogle Scholar
  6. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, MolkentinJD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–62PubMedCrossRefGoogle Scholar
  7. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P(2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280: 18558–61PubMedCrossRefGoogle Scholar
  8. Beavis AD (1992) Properties of the inner membrane anion channel in intact mitochondria. J Bioenerg Biomembr 24: 77–90PubMedCrossRefGoogle Scholar
  9. Beavis AD, Powers M (2004) Temperature dependence of the mitochondrial inner membrane anion channel: the relationship between temperature and inhibition by magnesium. J Biol Chem 279: 4045–50PubMedCrossRefGoogle Scholar
  10. Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466: 130–4PubMedCrossRefGoogle Scholar
  11. Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267: 2934–9PubMedGoogle Scholar
  12. Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276: 21482–8PubMedCrossRefGoogle Scholar
  13. Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS (2005) Type1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717: 1–10PubMedCrossRefGoogle Scholar
  14. Billman GE, Englert HC, Scholkens BA (1998) HMR 1883, a novel cardioselective inhibitor of the ATP-sensitive potassium channel. Part II: effects on susceptibility to ventricular fibrillation induced by myocardial ischemia in conscious dogs. J Pharmacol Exp Ther 286: 1465–73PubMedGoogle Scholar
  15. Borecky J, Jezek P, D. Siemen D (1997) 108-pS channel in brown fat mitochondria might be identical to the inner membrane anion channel.J Biol Chem 272: 19282–9PubMedGoogle Scholar
  16. Bragadin M, Pozzan T, Azzone GF (1979) Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18: 5972–8PubMedCrossRefGoogle Scholar
  17. Brierley GP, Jurkowitz M, K. Scott KM, Merola AJ (1971) Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations. Arch Biochem Biophys 147: 545–56PubMedCrossRefGoogle Scholar
  18. Bryan J, Vila-Carriles WH, Zhao G, Babenko AP, Aguilar-Bryan L(2004) Toward linking structure with function in ATP-sensitive K+channels. Diabetes 53 Suppl 3: S104–12CrossRefGoogle Scholar
  19. Cao CM, Chen M, Wong TM (2005a) The K(Ca) channel as a trigger for the cardioprotection induced by kappa-opioid receptor stimulation –its relationship with protein kinase C. Br J Pharmacol 145: 984–91CrossRefGoogle Scholar
  20. Cao CM, Xia Q, Gao Q, Chen M, Wong TM (2005b) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 312: 644–50CrossRefGoogle Scholar
  21. Chutkow WA, Samuel V, Hansen PA, Pu J, Valdivia CR, Makielski JC, Burant CF (2001) Disruption of Sur2-containing K(ATP) channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci USA 98: 11760–4PubMedCrossRefGoogle Scholar
  22. Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62: 79–109PubMedCrossRefGoogle Scholar
  23. Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84: 2734–55PubMedCrossRefGoogle Scholar
  24. Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J87: 2060–73PubMedCrossRefGoogle Scholar
  25. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, M. Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97: 329–36PubMedCrossRefGoogle Scholar
  26. Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290: H1808–H1817PubMedCrossRefGoogle Scholar
  27. Demin OV, Kholodenko BN, Skulachev VP (1998) A model of O2.-generation in the complex III of the electron transport chain. Mol Cell Biochem 184: 21–33PubMedCrossRefGoogle Scholar
  28. Denton RM, McCormack JG (1990) Ca2+ as a second messenger within mitochondria of the heart and other tissues. Ann Rev Physiol52: 451–66CrossRefGoogle Scholar
  29. Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: Fixing a hole. Cardiovasc Res 70: 191–199PubMedCrossRefGoogle Scholar
  30. Diwan JJ (1985) Ba2+ uptake and the inhibition by Ba2+ of K+ flux into rat liver mitochondria. J Membr Biol 84: 165–71PubMedCrossRefGoogle Scholar
  31. Douglas MG, Cockrell RS (1974) Mitochondrial cation-hydrogen ion exchange. Sodium selective transport by mitochondria and submitochondrial particles. J Biol Chem 249: 5464–71PubMedGoogle Scholar
  32. Ferreira GC, Pedersen PL (1993) Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges. J Bioenerg Biomembr 25: 483–92PubMedCrossRefGoogle Scholar
  33. Gao Q, Zhang SZ, Cao CM, Bruce IC, Xia Q (2005) The mitochondrial permeability transition pore and the Ca2+-activated K+ channel contribute to the cardioprotection conferred by tumor necrosisfactor-alpha. Cytokine 32: 199–205PubMedCrossRefGoogle Scholar
  34. Garlid KD (1996) Cation transport in mitochondria– the potassium cycle. Biochim Biophys Acta 1275: 123–6PubMedCrossRefGoogle Scholar
  35. Garlid KD, Beavis AD (1986) Evidence for the existence of an inner membrane anion channel in mitochondria. Biochim Biophys Acta853: 187–204PubMedGoogle Scholar
  36. Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606: 1–21PubMedCrossRefGoogle Scholar
  37. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray MH, Darbenzio RB, D’ Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotectiveeffect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–82PubMedGoogle Scholar
  38. Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA (1996) the mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 271: 8796–9PubMedCrossRefGoogle Scholar
  39. Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, Weizman A (1999) Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev 51: 629–50PubMedGoogle Scholar
  40. Ghosh S, Standen NB, Galinanes M (2000) Evidence for mitochondrial KATP channels as effectors of human myocardial preconditioning. Cardiovasc Res 45: 934–40PubMedCrossRefGoogle Scholar
  41. Grover GJ, Garlid KD (2000) ATP-Sensitive potassium channels: are view of their cardioprotective pharmacology. J Mol Cell Cardiol32: 677–95PubMedCrossRefGoogle Scholar
  42. Grover GJ, D’ Alonzo AJ, Garlid KD, Bajgar R, Lodge NJ, Sleph PG, Darbenzio RB, Hess TA, Smith MA, Paucek P. Atwal KS (2001) Pharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther 297: 1184-92PubMedGoogle Scholar
  43. Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG (1989) Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 251: 98–104PubMedGoogle Scholar
  44. Gumina RJ, Pucar D, Bast P, Hodgson DM, Kurtz CE, Dzeja PP, Miki T, Seino S, Terzic A (2003) Knockout of Kir 6.2 negates ischemic preconditioning-induced protection of myocardial energetics. Am J Physiol Heart Circ Physiol 284: H2106–13PubMedGoogle Scholar
  45. Gunter KK, Gunter TE (1994) Transport of calcium by mitochondria. J Bioenerg Biomembr 26: 471–85PubMedCrossRefGoogle Scholar
  46. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–86PubMedGoogle Scholar
  47. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1: 401–8PubMedCrossRefGoogle Scholar
  48. Halestrap AP (1987) The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin andCa2+. Biochem J 244: 159–64PubMedGoogle Scholar
  49. Halestrap AP, Clarke SJ, Javadov SA (2004) mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61: 372–85PubMedCrossRefGoogle Scholar
  50. Hansford RG, Lehninger AL (1972) The effect of the coupled oxidation of substrate on the permeability of blow fly flight-musclemitochondria to potassium and other cations. Biochem J 126: 689–700PubMedGoogle Scholar
  51. Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251: 5069–77PubMedGoogle Scholar
  52. Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352: 244–7PubMedCrossRefGoogle Scholar
  53. Jezek P, Jezek J (2003) Sequence anatomy of mitochondrial anion carriers. FEBS Lett 534: 15–25PubMedCrossRefGoogle Scholar
  54. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman DB, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113: 1535–49PubMedGoogle Scholar
  55. Jung DW, Baysal K, Brierley GP (1995) The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem 270: 672–8PubMedCrossRefGoogle Scholar
  56. Jung DW, Chavez E, Brierley GP (1977) Energy-dependent exchange ofK+ in heart mitochondria. K+ influx. Arch Biochem Biophys 183: 452–9PubMedCrossRefGoogle Scholar
  57. Jung DW, Farooqui T, Utz E, Brierley GP (1984) Effects of quinine on K+ transport in heart mitochondria. J Bioenerg Biomembr 16: 379–90PubMedCrossRefGoogle Scholar
  58. Kinnally KW, Zorov DB, Antonenko YN, Snyder SH, McEnery MW, TedeschiH (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci USA 90: 1374–8PubMedCrossRefGoogle Scholar
  59. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature427: 360–4PubMedCrossRefGoogle Scholar
  60. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature427: 461–5PubMedCrossRefGoogle Scholar
  61. Kopustinskiene DM, Pollesello P, Saris NE (2001) Levosimendan is a mitochondrial K(ATP) channel opener. Eur J Pharmacol 428: 311–4PubMedCrossRefGoogle Scholar
  62. Lamping KA, Gross GJ (1985) Improved recovery of myocardial segment function following a short coronary occlusion in dogs by nicorandil, a potential new anti anginal agent, and nifedipine. J Cardiovasc Pharmacol 7: 158–66PubMedCrossRefGoogle Scholar
  63. Liu Y, Ren G, O’Rourke B, Marban E, Seharaseyon J (2001) Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol Pharmacol59: 225–30PubMedGoogle Scholar
  64. Liu Y, Sato T, O’Rourke B, Marban E (1998) mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97: 2463–9PubMedGoogle Scholar
  65. Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW (2005) The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 37: 155–64PubMedCrossRefGoogle Scholar
  66. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434: 652–8PubMedCrossRefGoogle Scholar
  67. Nicholls DG, Ferguson SJ (2002) Bioenergetics 3, Third ed., Academic Press, LondonGoogle Scholar
  68. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–8PubMedCrossRefGoogle Scholar
  69. Ockaili R, Emani VR, Okubo S, Brown M, Krottapalli K, Kukreja RC(1999) Opening of mitochondrial KATP channel induces early anddelayed cardioprotective effect: role of nitric oxide. Am J Physiol277: H2425–34PubMedGoogle Scholar
  70. Ockaili R, Salloum F, Hawkins J, Kukreja RC (2002) Sildenafil(Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 283: H1263–9PubMedGoogle Scholar
  71. Ohya S, Kuwata Y, Sakamoto K, Muraki K, Imaizumi Y (2005) Cardioprotective effects of estradiol include the activation of large-conductance Ca(2+)-activated K(+) channels in cardiac mitochondria. Am J Physiol Heart Circ Physiol 289: H1635–42PubMedCrossRefGoogle Scholar
  72. Oldenburg O, Cohen MV, Downey JM (2003) Mitochondrial K(ATP) channels in preconditioning. J Mol Cell Cardiol 35: 569–75PubMedCrossRefGoogle Scholar
  73. O’Rourke B (2000) Pathophysiological and protective roles of mitochondrial ion channels. J Physiol 529 Pt 1: 23–36PubMedCrossRefGoogle Scholar
  74. O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94: 420–32PubMedCrossRefGoogle Scholar
  75. O’Rourke B, B. Ramza BM, Marban E (1994) Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265: 962–6PubMedCrossRefGoogle Scholar
  76. Otani H (2004) Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal6: 449–69PubMedCrossRefGoogle Scholar
  77. Pain T, X. Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channel striggers the preconditioned state by generating free radicals. Circ Res 87: 460–6PubMedGoogle Scholar
  78. Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD(1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267: 26062–9PubMedGoogle Scholar
  79. Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155: 725–31PubMedCrossRefGoogle Scholar
  80. Rousset S, Alves-Guerra MC, Mozo Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53 Suppl 1: S130–5CrossRefGoogle Scholar
  81. Sasaki N, Murata M, Guo Y, Jo SH, Ohler A, Akao M, O’Rourke B, XiaoRP, Bolli R, Marban E (2003) MCC-134, a single pharmacophore, openssurface ATP-sensitive potassium channels, blocks mitochondrial ATP-sensitive potassium channels, and suppresses preconditioning. Circulation 107: 1183–8PubMedCrossRefGoogle Scholar
  82. Sasaki N, Sato T, Ohler A, O’Rourke B, Marban E (2000) Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101: 439–45PubMedGoogle Scholar
  83. Sato T, Costa AD, Saito T, Ogura T, Ishida H, Garlid KD, Nakaya H(2006) Bepridil, an antiarrhythmic drug, opens mitochondrial KATP channels, blocks sarcolemmal KATP channels, and confers cardioprotection. J Pharmacol Exp Ther 316: 182–8PubMedCrossRefGoogle Scholar
  84. Sato T, O’Rourke B, Marban E (1998) Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83: 110–4PubMedGoogle Scholar
  85. Sato T, Saito T, Saegusa N, Nakaya H (2005) MitochondrialCa2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A.Circulation 111: 198–203PubMedCrossRefGoogle Scholar
  86. Sato T, Sasaki N, Seharaseyon J, O’Rourke B, Marban E (2000) Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection.Circulation 101: 2418–23PubMedGoogle Scholar
  87. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is acomponent of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102: 12005–10PubMedCrossRefGoogle Scholar
  88. Seino S, Miki T (2003) Physiological and pathophysiological roles ofATP-sensitive K+ channels. Prog Biophys Mol Biol 81: 133–76PubMedCrossRefGoogle Scholar
  89. Shintani Y, Node K, Asanuma H, Sanada S, Takashima S, Asano Y, LiaoY, Fujita M, A Hirata A, Shinozaki Y, Fukushima T, Nagamachi Y, Okuda H, Kim J, Tomoike H, Hori M, Kitakaze M (2004) Opening of Ca2+-activated K+ channels is involved in ischemic preconditioning in canine hearts. J Mol Cell Cardiol 37: 1213–8PubMedGoogle Scholar
  90. Sorgato MC, Keller BU, Stuhmer W (1987) Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature 330: 498–500PubMedCrossRefGoogle Scholar
  91. Stowe DF, Aldakkak M, Camara AK, Riess ML, Heinen A, Varadarajan SG, Jiang MT (2006) Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation Am J Physiol Heart Circ Physiol 290: H434–40Google Scholar
  92. Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem 109: 269–83PubMedCrossRefGoogle Scholar
  93. Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, Nakaya H(2003) Cardioprotective effect of diazoxide is mediated byactivation of sarcolemmal but not mitochondrial ATP-sensitivepotassium channels in mice. Circulation 107: 682–5PubMedCrossRefGoogle Scholar
  94. Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, TamagawaM, Seino S, Marban E, Nakaya H (2002) Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury inmice. J Clin Invest 109: 509–16PubMedGoogle Scholar
  95. Szabo I, Bernardi P, Zoratti M (1992) Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem 267: 2940–6PubMedGoogle Scholar
  96. Szewczyk A, Mikolajek B, Pikula S, Nalecz MJ (1993) Potassium channel openers induce mitochondrial matrix volume changes via activation of ATP-sensitive K+ channel. Pol J Pharmacol 45: 437–43PubMedGoogle Scholar
  97. Tanno M, Miura T, Tsuchida A, Miki T, Nishino Y, Ohnuma Y, andShimamoto K (2001) Contribution of both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels to infarct size limitation by K(ATP)channel openers: differences from preconditioning in the role ofsarcolemmal K(ATP) channels. Naunyn Schmiedebergs Arch Pharmacol364: 226–32PubMedCrossRefGoogle Scholar
  98. Tanonaka K, Taguchi T, Koshimizu M, Ando T, Morinaka T, Yogo T, Konishi F, Takeo S (1999) Role of an ATP-sensitive potassium channel opener, YM934, in mitochondrial energy production in ischemic/reperfused heart. J Pharmacol Exp Ther 291: 710–6PubMedGoogle Scholar
  99. Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca(2+)activation of heart mitochondrial oxidative phosphorylation: role ofthe F(0) /F(1) -ATPase. Am J Physiol Cell Physiol 278: C423–35PubMedGoogle Scholar
  100. Uchiyama Y, Otani H, Wakeno M, Okada T, Uchiyama T, Sumida T, KidoM, Imamura H, Nakao S, Shingu K (2003) Role of mitochondrial KATP channels and protein kinase C in ischaemic preconditioning. Clin Exp Pharmacol Physiol 30: 426–36PubMedCrossRefGoogle Scholar
  101. Wang X, Yin C, Xi L, Kukreja RC (2004) Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/Rinjury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287: H2070–7PubMedCrossRefGoogle Scholar
  102. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B(2002) Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science 298: 1029–33PubMedCrossRefGoogle Scholar
  103. Xu Z, Ji X, and Boysen PG (2004) Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol 286: H1433–40PubMedCrossRefGoogle Scholar
  104. Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE, Terzic A (2002) Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 99: 13278–83PubMedCrossRefGoogle Scholar
  105. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenonaccompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192: 1001–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Brian O’Rourke

There are no affiliations available

Personalised recommendations