Skip to main content

Regulation of Mitochondrial Respiration in Heart Muscle

  • Chapter
Mitochondria

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

Heart muscle with its continual and heavy use of energy is strongly dependent on the most efficient biological energy provider, the process of oxidative phosphorylation, which is responsible for the aerobic conversion and conservation of the combustion energy of fuel substrates to ATP, the universal cellular energy currency. Its key reactions are localized in mitochondria. The myocardial mitochondrion may be regarded as an archetype of its kind and therefore is also a classical experimental model in research on oxidative phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Leslie AG, Lutter R, and Walker JE (1994) Structure at 2.8 Ã… resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–628

    PubMed  CAS  Google Scholar 

  • Ala-Rämi A, Ylihautala M, Ingman P, Hassinen IE (2005) Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection. Metabolism 54: 410–420

    PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    PubMed  CAS  Google Scholar 

  • Anthony G, Reimann A, Kadenbach B (1993) Tissue-specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa. Proc Natl Acad Sci USA 90: 1652–1656

    PubMed  CAS  Google Scholar 

  • Arnold S, Kadenbach B (1997) Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. Eur. J Biochem 249: 350–354

    PubMed  CAS  Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030–4034

    CAS  Google Scholar 

  • Beckmann JD, Frerman FE (1985) Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry 24: 3913–3921

    PubMed  CAS  Google Scholar 

  • Belke DD, Wang LC, Lopaschuk GD (1998) Acetyl-CoA carboxylase control of fatty acid oxidation in hearts from hibernating Richardson’s ground squirrels. Biochim Biophys Acta 1391: 25–36

    PubMed  CAS  Google Scholar 

  • Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466: 130–134

    PubMed  CAS  Google Scholar 

  • Bessman SP, Geiger PJ (1981) Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211: 448–452

    PubMed  CAS  Google Scholar 

  • Brandt U (1997) Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. Biochim Biophys Acta 1318: 79–91

    PubMed  CAS  Google Scholar 

  • Cabezon E, Arechaga I, Jonathan P, Butler G, Walker JE (2000) Dimerization of bovine F1-ATPase by binding the inhibitor protein, IF1. J Biol Chem 275: 28353–28355

    PubMed  CAS  Google Scholar 

  • Chance B, Leigh JS Jr, Clark BJ, Maris J, Kent J, Nioka S, Smith D (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A 82: 8384–8388

    PubMed  CAS  Google Scholar 

  • Channer KS, Channer JL, Campbell MJ, Rees JR (1988) Cardiomyopathy in the Kearns-Sayre syndrome. Br Heart J 59: 486–490

    PubMed  CAS  Google Scholar 

  • Denton RM, Randle PJ, Bridges BJ, Cooper RH, Kerbey AL, Pask HT, Severson DL, Stansbie D, Whitehouse S (1975) Regulation of mammalian pyruvate dehydrogenase. Mol Cell Biochem 9: 27–53

    PubMed  CAS  Google Scholar 

  • Dutton PL, Moser CC, Sled VD, Daldal F, Ohnishi T (1998) A reductant-induced oxidation mechanism for complex I. Biochim Biophys Acta 1364: 245–257

    PubMed  CAS  Google Scholar 

  • Dyck JR, Barr AJ, Barr RL, Kolattukudy PE, Lopaschuk GD (1998) Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol 275: H2122–H2129

    PubMed  CAS  Google Scholar 

  • Ehrlich RS, Colman RF (1982) Interrelationships among nucleotide binding sites of pig heart NAD-dependent isocitrate dehydrogenase. J Biol Chem 257: 4769–4774

    PubMed  CAS  Google Scholar 

  • Feliciello A, Gottesman ME, Avvedimento EV (2005) cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal 17: 279–287

    PubMed  CAS  Google Scholar 

  • Flemming D, Hellwig P, Friedrich T (2003) Involvement of tyrosines 114 and 139 of subunit NuoB in the proton pathway around cluster N2 in Escherichia coli NADH:ubiquinone oxidoreductase. J Biol Chem 278: 3055–3062

    PubMed  CAS  Google Scholar 

  • Forsander OA (1970) Effects of ethanol on metabolic pathways. In: Tremoliers J, editor. International encyclopedia of paharmacology and therapeutics. New York: Pergamon Press pp. 117–135

    Google Scholar 

  • Frank V, Kadenbach B (1996) Regulation of the H+/e- stoichiometry of cytochrome c oxidase from bovine heart by intramitochondrial ATP/ADP ratios. FEBS Lett 382: 121–124

    PubMed  CAS  Google Scholar 

  • Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187: 529–540

    PubMed  CAS  Google Scholar 

  • Garofano A, Zwicker K, Kerscher S, Okun P, Brandt U (2003) Two aspartic acid residues in the PSST-homologous NUKM subunit of complex I from Yarrowia lipolytica are essential for catalytic activity. J Biol Chem 278: 42435–42440

    PubMed  CAS  Google Scholar 

  • Green DW, Murray HN, Sleph PG, Wang FL, Baird AJ, Rogers WL, Grover GJ (1998) Preconditioning in rat hearts is independent of mitochondrial F1F0 ATPase inhibition. Am J Physiol 274: H90–H97

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1993) Pyrophosphate metabolism in the perfused heart and isolated heart mitochondria and its role in regulation of mitochondrial function by calcium. Biochem J 290: 489–495

    PubMed  CAS  Google Scholar 

  • Groen AK, Wanders RJ, Westerhoff HV, Van der MR, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257: 2754–2757

    Google Scholar 

  • Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276: 105–112

    PubMed  CAS  Google Scholar 

  • Gupte SS, Hackenbrock CR (1988) Multidimensional diffusion modes and collision frequencies of cytochrome c with its redox partners. J Biol Chem 263: 5241–5247

    PubMed  CAS  Google Scholar 

  • Hassinen I, Ito K, Nioka S, Chance B (1990) Mechanism of fatty acid effect on myocardial oxygen consumption. A phosphorus NMR study. Biochim Biophys Acta 1019: 73–80

    PubMed  CAS  Google Scholar 

  • Hassinen IE (1986) Mitochondrial respiratory control in the myocardium. Biochim Biophys Acta 853: 135–151

    PubMed  CAS  Google Scholar 

  • Hassinen IE, Hiltunen K (1975) Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system. Biochim Biophys Acta 408: 319–330

    PubMed  CAS  Google Scholar 

  • Hassinen IE, Vuokila PT (1993) Reaction of dicyclohexylcarbodiimide with mitochondrial proteins. Biochim Biophys Acta 1144: 107–124

    PubMed  CAS  Google Scholar 

  • Heineman FW, Balaban RS (1990) Control of mitochondrial respiration in the heart in vivo. Ann Rev Physiol 52: 523–542

    CAS  Google Scholar 

  • Holt PJ, Morgan DJ, Sazanov LA (2003) The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J Biol Chem 278: 43114–43120

    PubMed  CAS  Google Scholar 

  • Honkakoski PJ, Hassinen IE (1986) Sensitivity to NN’-dicyclohexylcarbodi-imide of proton translocation by mitochondrial NADH:ubiquinone oxidoreductase. Biochem J 237: 927–930

    PubMed  CAS  Google Scholar 

  • Houstek J, Cannon B, Lindberg O (1975) Glycerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue. Eur J Biochem 54: 11–18

    PubMed  CAS  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281: 64–71

    PubMed  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Ã… resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669

    PubMed  CAS  Google Scholar 

  • Jeneson JA, Wiseman RW, Westerhoff HV, Kushmerick MJ (1996) The signal transduction function for oxidative phosphorylation is at least second order in ADP. J Biol Chem 271: 27995–27998

    PubMed  CAS  Google Scholar 

  • Kacser H (1983) The control of enzyme systems in vivo: elasticity analysis of the steady state. Biochem Soc Trans 11: 35–40

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27: 65–104

    PubMed  CAS  Google Scholar 

  • Kato-Yamada Y, Noji H, Yasuda R, Kinosita K Jr, Yoshida M (1998) Direct observation of the rotation of epsilon subunit in F1-ATPase. J Biol Chem 273: 19375–19377

    PubMed  CAS  Google Scholar 

  • Katz LA, Swain JA, Portman MA, Balaban RS (1989) Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol 256: H265–H274

    PubMed  CAS  Google Scholar 

  • Kauppinen RA, Hiltunen JK, Hassinen IE (1980) Subcellular distribution of phosphagens in isolated perfused rat heart. FEBS Lett 112: 273–276

    PubMed  CAS  Google Scholar 

  • Kauppinen RA, Hiltunen JK, Hassinen IE (1983) Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart. Biochim Biophys Acta 725: 425–433

    PubMed  CAS  Google Scholar 

  • Kervinen M, Patsi J, Finel M, Hassinen IE (2004) A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry 43: 773–781

    PubMed  CAS  Google Scholar 

  • Klingenberg M (1970) Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane. Eur J Biochem 13: 247–252

    PubMed  CAS  Google Scholar 

  • Kornberg H (1966) Anaplerotic sequences and their role in metabolism. Essays Biochem 1–31

    Google Scholar 

  • Korzeniewski B (1998) Regulation of ATP supply during muscle contraction: theoretical studies. Biochem J 330: 1189–1195

    PubMed  CAS  Google Scholar 

  • Korzeniewski B, Mazat JP (1996) Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies. Biochem J 319: 143–148

    PubMed  CAS  Google Scholar 

  • Korzeniewski B, Noma A, Matsuoka S (2005) Regulation of oxidative phosphorylation in intact mammalian heart in vivo. Biophys Chem 116: 145–157

    PubMed  CAS  Google Scholar 

  • Kupriyanov VV, Ya SA, Ruuge EK, Kapel’ko VI, Yu ZM, Lakomkin VL, Smirnov VN, Saks VA (1984) Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Biochim Biophys Acta 805: 319–331

    CAS  Google Scholar 

  • Kurki S, Zickermann V, Kervinen M, Hassinen I, Finel M (2000). Mutagenesis of three conserved Glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide. Biochemistry 39: 13496–13502

    PubMed  CAS  Google Scholar 

  • LaNoue KF, Williamson JR (1971) Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria. Metabolism 20: 119–140

    PubMed  CAS  Google Scholar 

  • Lardy HA, Wellman H (1952) Oxidative phosphorylations; role of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem 195: 215–224

    PubMed  CAS  Google Scholar 

  • Leisey JR, Grotyohann LW, Scott DA, Scaduto RC Jr (1993) Regulation of cardiac mitochondrial calcium by average extramitochondrial calcium. Am J Physiol 265: H1203–H1208

    PubMed  CAS  Google Scholar 

  • Liimatta EV, Gödecke A, Schrader J, Hassinen IE (2004) Regulation of cellular respiration in myoglobin-deficient mouse heart. Mol Cell Biochem 256-257: 201–208

    PubMed  Google Scholar 

  • MacDonald MJ (1981) High content of mitochondrial glycerol-3-phosphate dehydrogenase in pancreatic islets and its inhibition by diazoxide. J Biol Chem 256: 8287–8290

    PubMed  CAS  Google Scholar 

  • MacGowan GA, Du C, Glonty V, Suhan JP, Koretsky AP, Farkas DL (2001) Rhod-2 based measurements of intracellular calcium in the perfused mouse heart: cellular and subcellular localization and response to positive inotropy. J Biomed Opt 6: 23–30

    PubMed  CAS  Google Scholar 

  • Manneschi L, Federico A (1995) Polarographic analyses of subsarcolemmal and intermyofibrillar mitochondria from rat skeletal and cardiac muscle. J Neurol Sci 128: 151–156

    PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1990) The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues. Biochim Biophys Acta 1018: 287–291

    PubMed  CAS  Google Scholar 

  • McGarry JD, Foster DW (1979) In support of the roles of malonyl-CoA and carnitine acyltransferase I in the regulation of hepatic fatty acid oxidation and ketogenesis. J Biol Chem 254: 8163–8168

    PubMed  CAS  Google Scholar 

  • Midgley PJ, Rutter GA, Thomas AP, Denton RM (1987) Effects of Ca2+ and Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within toluene-permeabilized mitochondria. Biochem J 241: 371–377

    PubMed  CAS  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59: 137–139

    PubMed  CAS  Google Scholar 

  • Muller G, Bandlow W (1987) cAMP-dependent protein kinase activity in yeast mitochondria. Z. Naturforsch [C] 42: 1291–1302

    CAS  Google Scholar 

  • Nichols BJ, Rigoulet M, Denton RM (1994) Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD+-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart. Biochem J 303: 461–465

    PubMed  CAS  Google Scholar 

  • Nuutinen EM, Hiltunen K, Hassinen IE (1981) The glutamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium. FEBS Lett 128: 356–360

    PubMed  CAS  Google Scholar 

  • Nuutinen EM (1984) Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Res Cardiol 79: 49–58

    PubMed  CAS  Google Scholar 

  • Ohnishi T, Salerno JC (2005) Conformation-driven and semiquinone-gated proton-pump mechanism in the NADH-ubiquinone oxidoreductase (complex I). FEBS Lett 579:4555-4561

    PubMed  CAS  Google Scholar 

  • Oster G, Wang H (2003) Rotary protein motors. Trends Cell Biol 13: 114–121

    PubMed  CAS  Google Scholar 

  • Ostro MJ, Fondy TP (1977) Isolation and characterization of multiple molecular forms of cytosolic NAD-linked glycerol-3-phosphate dehydrogenase from normal and neoplastic rabbit tissues. J Biol Chem 252: 5575–5583

    PubMed  CAS  Google Scholar 

  • Palmieri F, Bisaccia F, Capobianco L, Dolce V, Fiermonte G, Iacobazzi V, Zara V (1993) Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. J Bioenerg Biomembr 25: 493–501

    PubMed  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Cocco T, Speranza F, Scacco SC, Technikova-Dobrova Z (1996) The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 379: 299–301

    PubMed  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Scacco S, Petruzzella V, Technikova-Dobrova Z, Vergari R, Signorile A (2002) The NADH: ubiquinone oxidoreductase (complex I) of the mammalian respiratory chain and the cAMP cascade. J Bioenerg Biomembr 34: 1–10

    PubMed  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Scacco S, Technikova-Dobrova Z (1999) cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. FEBS Lett 444: 245–249

    PubMed  CAS  Google Scholar 

  • Penna C, Pagliaro P, Rastaldo R, Di Pancrazio F, Lippe G, Gattullo D, Mancardi D, Samaja M, Losano G, Mavelli I (2004) F0F1 ATP synthase activity is differently modulated by coronary reactive hyperemia before and after ischemic preconditioning in the goat. Am J Physiol Heart Circ Physiol 287: H2192–H2200

    PubMed  CAS  Google Scholar 

  • Peters SJ (2003) Regulation of PDH activity and isoform expression: diet and exercise. Biochem Soc Trans 31: 1274–1280

    PubMed  CAS  Google Scholar 

  • Peuhkurinen KJ, Hassinen IE (1982) Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Biochem J 202: 67–76

    PubMed  CAS  Google Scholar 

  • Ragan CI (1987) Structure of NADH-ubiquinone reductase (complex I). Curr Top Bioenerg 15: 1–35

    CAS  Google Scholar 

  • Ravindran S, Radke GA, Guest JR, Roche TE (1996) Lipoyl domain-based mechanism for the integrated feedback control of the pyruvate dehydrogenase complex by enhancement of pyruvate dehydrogenase kinase activity. J Biol Chem 271: 653–662

    PubMed  CAS  Google Scholar 

  • Reichmann H, Vogler L, Seibel P (1996) Ragged red or ragged blue fibers. Eur Neurol 36: 98–102

    PubMed  CAS  Google Scholar 

  • Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol 289: H868–H872

    PubMed  CAS  Google Scholar 

  • Ruzicka FJ, Beinert H (1977) A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway. J Biol Chem 252: 8440–8445

    PubMed  CAS  Google Scholar 

  • Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 39: 7229–7235

    PubMed  CAS  Google Scholar 

  • Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555: 154–159

    PubMed  CAS  Google Scholar 

  • Schilling B, Aggeler R, Schulenberg B, Murray J, Row RH, Capaldi RA, Gibson BW (2005) Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I. FEBS Lett 579: 2485–2490

    PubMed  CAS  Google Scholar 

  • Schulz H (1991) Beta oxidation of fatty acids. Biochim Biophys Acta 1081: 109–120

    PubMed  CAS  Google Scholar 

  • Siess EA, Kientsch-Engel RI, Wieland OH (1984) Concentration of free oxaloacetate in the mitochondrial compartment of isolated liver cells. Biochem J 218: 171–176

    PubMed  CAS  Google Scholar 

  • Signorile A, Sardanelli AM, Nuzzi R, Papa S (2002) Serine (threonine) phosphatase(s) acting on cAMP-dependent phosphoproteins in mammalian mitochondria. FEBS Lett 512: 91–94

    PubMed  CAS  Google Scholar 

  • Steenaart NA, Shore GC (1997) Mitochondrial cytochrome c oxidase subunit IV is phosphorylated by an endogenous kinase. FEBS Lett 415: 294–298

    PubMed  CAS  Google Scholar 

  • Sundqvist KE, Heikkilä J, Hassinen IE, Hiltunen JK (1987) Role of NADP+-linked malic enzymes as regulators of the pool size of tricarboxylic acid-cycle intermediates in the perfused rat heart. Biochem J 243: 853–857

    PubMed  CAS  Google Scholar 

  • Sundqvist KE, Hiltunen JK, Hassinen IE (1989) Pyruvate carboxylation in the rat heart. Role of biotin-dependent enzymes. Biochem J 257: 913–916

    CAS  Google Scholar 

  • Technikova-Dobrova Z, Sardanelli AM, Speranza F, Scacco S, Signorile A, Lorusso V, Papa S (2001) Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role. Biochemistry 40: 13941–13947

    PubMed  CAS  Google Scholar 

  • Todaka K, Wang J, Yi GH, Stennett R, Knecht M, Packer M, Burkhoff D (1996) Effects of levosimendan on myocardial contractility and oxygen consumption. J Pharmacol Exp Ther 279: 120–127

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272: 1136–1144

    PubMed  CAS  Google Scholar 

  • Ueno H, Suzuki T, Kinosita K Jr, Yoshida M (2005) ATP-driven stepwise rotation of FoF1-ATP synthase. Proc Natl Acad Sci USA 102: 1333–1338

    PubMed  CAS  Google Scholar 

  • Vendelin M, Kongas O, Saks V (2000) Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am J Physiol Cell Physiol 278: C747–C764

    PubMed  CAS  Google Scholar 

  • Vuorinen K, Ylitalo K, Peuhkurinen K, Raatikainen P, Ala-Rämi A, Hassinen IE (1995a) Mechanisms of ischemic preconditioning in rat myocardium. Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase. Circulation 91: 2810–2818

    PubMed  CAS  Google Scholar 

  • Vuorinen KH, Ala-Rämi A, Yan Y, Ingman P, Hassinen IE (1995b) Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+? J Mol Cell Cardiol 27: 1581–1591

    PubMed  CAS  Google Scholar 

  • Weinstein ES, Benson DW, Fry DE (1986) Subpopulations of human heart mitochondria. J Surg Res 40: 495–498

    PubMed  CAS  Google Scholar 

  • Wieland OH, Portenhauser R (1974) Regulation of pyruvate-dehydrogenase interconversion in rat-liver mitochondria as related to the phosphorylation state of intramitochondrial adenine nucleotides. Eur J Biochem 45: 577–588

    PubMed  CAS  Google Scholar 

  • Wikström M (1984) Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169: 300–304

    PubMed  Google Scholar 

  • Wikström M (1984) Pumping of protons from the mitochondrial matrix by cytochrome oxidase. Nature 308: 558–560

    PubMed  Google Scholar 

  • Williamson JR, Ford C, Illingworth J, Safer B (1976) Coordination of citric acid cycle activity with electron transport flux. Circ Res 38: I39–I51

    PubMed  CAS  Google Scholar 

  • Wilson DF, Owen CS, Holian A (1977) Control of mitochondrial respiration: a quantitative evaluation of the roles of cytochrome c and oxygen. Arch Biochem Biophys 182: 749–762

    PubMed  CAS  Google Scholar 

  • Wilson DF, Stubbs M, Veech RL, Erecinska M, Krebs HA (1974) Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem J 140: 57–64

    PubMed  CAS  Google Scholar 

  • Wu ST, Kojima S, Parmley WW, Wikman-Coffelt J (1992) Relationship between cytosolic calcium and oxygen consumption in isolated rat hearts. Cell Calcium 13: 235–247

    PubMed  CAS  Google Scholar 

  • Ylitalo K, Ala-Rämi A, Vuorinen K, Peuhkurinen K, Lepojärvi M, Kaukoranta P, Kiviluoma K, Hassinen IE (2001) Reversible ischemic inhibition of F1Fo-ATPase in rat and human myocardium. Biochim Biophys Acta 1504: 329–339

    PubMed  CAS  Google Scholar 

  • Zeviani M, Tiranti V, Piantadosi C (1998) Mitochondrial disorders. Medicine (Baltimore) 77: 59–72

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hassinen, I. (2007). Regulation of Mitochondrial Respiration in Heart Muscle. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_1

Download citation

Publish with us

Policies and ethics