Characterization of Chromosomal Translocations in Mouse Models of Hematological Malignancies Using Spectral Karyotyping, FISH, and Immunocytochemistry

  • Thomas Ried
  • Michael J. Difilippantonio


Model systems for cancer have long been used to study patterns, mechanisms, and consequences of chromosomal translocations. The first consistent translocation observed in mouse models, however, was the identification of recurrent exchanges between murine plasma cell tumors, which eventually led to the paradigm of translocation-induced activation of oncogenes in hematologic malignancies. In this chapter, we first provide a brief historical overview on the use of mouse models, then elucidate how technological development of cytogenetic techniques (chromosome banding) and molecular cytogenetic techniques (FISH and SKY) helped to arrive at a comprehensive view of chromosomal aberrations and patterns of aneuploidy. We provide an overview of mouse models analyzed with molecular cytogenetic techniques, and, lastly, describe how critical these advanced techniques have been to understand the mechanisms of the complex interplay of DNA double strand breaks and their repair for the maintenance of genomic instability.


Chromosomal Aberration Burkitt Lymphoma Ataxia Telangiectasia Aberrant Chromosome Nucleic Acid Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumors. Nat Genet 34:369–376PubMedCrossRefGoogle Scholar
  2. Barlow C, Hirotsune S, Paylor R et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171PubMedCrossRefGoogle Scholar
  3. Barnes DW, Ford CE, Gray SM, Loutit JF (1959) Spontaneous and induced changes in cell populations in heavily irradiated mice. In: Progress in Nuclear Biology – Biological Sciences Elsevier, Oxford Series 6:vol 2:1–10Google Scholar
  4. Bayreuther K (1960) Chromosomes in primary neoplastic growth Nature 186:6–9Google Scholar
  5. Berger R, Bernard OA (2007) Jumping translocations. Genes Chromosomes Cancer 46:717–723PubMedCrossRefGoogle Scholar
  6. Bosco G, Haber JE (1998) Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150:1037–1047PubMedGoogle Scholar
  7. Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Gustav Fischer, JenaGoogle Scholar
  8. Boveri T (1929) The origin of malignant tumors. Williams & Wilkins, BaltimoreGoogle Scholar
  9. Bransteitter R, Pham P, Scharff MD, Goodman MF (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 100:4102–4107PubMedCrossRefGoogle Scholar
  10. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854PubMedCrossRefGoogle Scholar
  11. Caspersson T, Zech L, Johansson C, Modest EJ (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30:215–227PubMedCrossRefGoogle Scholar
  12. Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927PubMedCrossRefGoogle Scholar
  13. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–730PubMedCrossRefGoogle Scholar
  14. Chen HT, Bhandoola A, Difilippantonio MJ et al (2000) Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290:1962–1965PubMedCrossRefGoogle Scholar
  15. Coleman AE, Schrock E, Weaver Z et al (1997) Previously hidden chromosome aberrations in T(12;15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Res 57:4585–4592PubMedGoogle Scholar
  16. Coleman AE, Forest ST, McNeil N, Kovalchuk AL, Ried T, Janz S (1999a) Cytogenetic analysis of the bipotential murine pre-B cell lymphoma, P388, and its derivative macrophage-like tumor, P388D1, using SKY and CGH. Leukemia 13:1592–1600PubMedCrossRefGoogle Scholar
  17. Coleman AE, Kovalchuk AL, Janz S, Palini A, Ried T (1999b) Jumping translocation breakpoint regions lead to amplification of rearranged Myc. Blood 93:4442–4444PubMedGoogle Scholar
  18. Coleman AE, Ried T, Janz S (1999c) Recurrent non-reciprocal translocations of chromosome 5 in primary T(12;15)-positive BALB/c plasmacytomas. Curr Top Microbiol Immunol 246:175–180PubMedCrossRefGoogle Scholar
  19. Collard JG, Philippus E, Tulp A, Lebo RV, Gray JW (1984) Separation and analysis of human chromosomes by combined velocity sedimentation and flow sorting applying single- and dual-laser flow cytometry. Cytometry 5:9–19PubMedCrossRefGoogle Scholar
  20. Crabtree JS, Scacheri PC, Ward JM et al (2003) Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol Cell Biol 23:6075–6085PubMedCrossRefGoogle Scholar
  21. Crews S, Barth R, Hood L, Prehn J, Calame K (1982) Mouse c-myc oncogene is located on chromosome 15 and translocated to chromosome 12 in plasmacytomas. Science 218:1319–1321PubMedCrossRefGoogle Scholar
  22. Danska JS, Guidos CJ (1997) Essential and perilous: V(D)J recombination and DNA damage checkpoints in lymphocyte precursors. Semin Immunol 9:199–206PubMedCrossRefGoogle Scholar
  23. Dev VG, Grewal MS, Miller DA, Kouri RE, Hutton JJ, Miller OJ (1971) The quinacrine fluorescence karyotype of Mus musculus and demonstration of strain differences in secondary constrictions. Cytogenetics 10:436–451PubMedCrossRefGoogle Scholar
  24. Di Noia J, Neuberger MS (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419:43–48PubMedCrossRefGoogle Scholar
  25. Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22PubMedCrossRefGoogle Scholar
  26. Dickerson SK, Market E, Besmer E, Papavasiliou FN (2003) AID mediates hypermutation by deaminating single stranded DNA. J Exp Med 197:1291–1296PubMedCrossRefGoogle Scholar
  27. Difilippantonio MJ, Zhu J, Chen HT et al (2000) DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:510–514PubMedCrossRefGoogle Scholar
  28. Difilippantonio MJ, Petersen S, Chen HT et al (2002) Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 196:469–480PubMedCrossRefGoogle Scholar
  29. Dorritie K, Montagna C, Difilippantonio MJ, Ried T (2004) Advanced molecular cytogenetics in human and mouse. Expert Rev Mol Diagn 4:663–676PubMedCrossRefGoogle Scholar
  30. Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–4817PubMedCrossRefGoogle Scholar
  31. Felix K, Kovalchuk AL, Park SS et al (2001) Inducible mutagenesis in TEPC 2372, a mouse plasmacytoma cell line that harbors the transgenic shuttle vector lambdaLIZ. Mutat Res 473:121–136PubMedCrossRefGoogle Scholar
  32. Fichdzhian BC, Pogosiants EE (1963) Chromosomal characteristics of 3 transplantable leukemias in rats. Vopr Onkol 21:47–51PubMedGoogle Scholar
  33. Ford CE, Hamerton JL, Mole RH (1958) Chromosomal changes in primary and transplanted reticular neoplasms of the mouse. J Cell Physiol Suppl 52:235–262, discussion 62–9PubMedGoogle Scholar
  34. Gaiser T, Berroa-Garcia L, Kemmerling R, Dutta A, Ried T, Heselmeyer-Haddad K (2010) Automated analysis of protein expression and gene amplification within the same cells of paraffin-embedded tumour tissue. Anal Cell Pathol (Amst) 33:105–112Google Scholar
  35. Gee CJ, Harris H (1979) Tumorigenicity of cells transformed by Simian virus 40 and of hybrids between such cells and normal diploid cells. J Cell Sci 36:223–240PubMedGoogle Scholar
  36. Goff SP, D’Eustachio P, Ruddle FH, Baltimore D (1982) Chromosomal assignment of the endogenous proto-oncogene C-abl. Science 218:1317–1319PubMedCrossRefGoogle Scholar
  37. Hansemann D (1890) Über asymmetrische Zellteilung in Epithelkrebsen und deren biologische Bedeutung. Virchows ArchPathol 119:299–326CrossRefGoogle Scholar
  38. Harris H (1995) The cells of the body. A history of somatic cell genetics. Cold Spring Harbor Press, Plainview, NYGoogle Scholar
  39. Hashmi S, Allderdice PW, Klein G, Miller OJ (1974) Chromosomal heterogeneity in the RAG and MSWBS mouse tumor cell lines. Cancer Res 34:79–88PubMedGoogle Scholar
  40. Hauschka TS, Levan A (1958) Cytologic and functional characterization of single cell clones isolated from the Krebs-2 and Ehrlich ascites tumors. J Natl Cancer Inst 21:77–135PubMedGoogle Scholar
  41. Heim S, Mitelman F (2009) Cancer Cytogenetics. John Wiley & Sons, HobokenGoogle Scholar
  42. Holland MS, Mackenzie CD, Bull RW, Silva RF (1996) A comparative study of histological conditions suitable for both immunofluorescence and in situ hybridization in the detection of Herpesvirus and its antigens in chicken tissues. J Histochem Cytochem 44:259–265PubMedCrossRefGoogle Scholar
  43. Hsu TC (1979) Human and mammalian cytogenetics. An historical perspective. Springer Verlag, New YorkCrossRefGoogle Scholar
  44. Imai K, Slupphaug G, Lee WI et al (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4:1023–1028PubMedCrossRefGoogle Scholar
  45. Klein G (1951) Comparative studies of mouse tumors with respect to their capacity for growth as “ascites tumors” and their average nucleic acid content per cell. Exp Cell Res 2:518–573CrossRefGoogle Scholar
  46. Kovalchuk AL, Esa A, Coleman AE et al (2001) Translocation remodeling in the primary BALB/c plasmacytoma TEPC 3610. Genes Chromosomes Cancer 30:283–291PubMedCrossRefGoogle Scholar
  47. Levan A, Biesele JJ (1958) Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells. Ann N Y Acad Sci 71:1022–1053PubMedCrossRefGoogle Scholar
  48. Liu Y, Zhang L, Desiderio S (2009) Temporal and spatial regulation of V(D)J recombination: interactions of extrinsic factors with the RAG complex. Adv Exp Med Biol 650:157–165PubMedCrossRefGoogle Scholar
  49. Liyanage M, Coleman A, du Manoir S et al (1996) Nat Genet 14(3):312–315PubMedGoogle Scholar
  50. Liyanage M, Weaver Z, Barlow C et al (2000) Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 96:1940–1946PubMedGoogle Scholar
  51. Makino S (1951) Some observations on the chromosomes in the Yoshida sarcoma cells based on the homoplastic and heteroplastic transplantations; a preliminary report. Gann 42:87–90PubMedGoogle Scholar
  52. Makino S (1952) Cytological studies on cancer. III. The characteristics and individuality of chromosomes in tumor cells of the Yoshida sarcoma which contribute to the growth of the tumor. Gan 43:17–34PubMedGoogle Scholar
  53. McMichael H, Wagner JE, Nowell PC, Hungerford DA (1963) Chromosome Studies of Virus-Induced Rabbit Papillomas and Derived Primary Carcinomas. J Natl Cancer Inst 31:1197–1215PubMedGoogle Scholar
  54. McNeil N, Kim JS, Ried T, Janz S (2005) Extraosseous IL-6 transgenic mouse plasmacytoma sometimes lacks Myc-activating chromosomal translocation. Genes Chromosomes Cancer 43:137–146PubMedCrossRefGoogle Scholar
  55. Meltzer PS, Guan XY, Trent JM (1993) Telomere capture stabilizes chromosome breakage. Nat Genet 4:252–255PubMedCrossRefGoogle Scholar
  56. Mialhe A, Cassanelli S, Louis J, Seigneurin D (1996) Methods for simultaneous interphase in situ hybridization and nuclear antigen immunocytochemistry in T47-D cells. J Histochem Cytochem 44:193–197PubMedCrossRefGoogle Scholar
  57. Miller JF (1961) Etiology and pathogenesis of mouse leukemia. Adv Cancer Res 6:291–368PubMedCrossRefGoogle Scholar
  58. Miller OJ, Miller DA, Kouri RE et al (1971) Identification of the mouse karyotype by quinacrine fluorescence, and tentative assignment of seven linkage groups. Proc Natl Acad Sci USA 68:1530–1533PubMedCrossRefGoogle Scholar
  59. Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T (2002) Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene 21:890–898PubMedCrossRefGoogle Scholar
  60. Montagna C, Lyu MS, Hunter K et al (2003) The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res 63:2179–2187PubMedGoogle Scholar
  61. Morrow DM, Connelly C, Hieter P (1997) “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382PubMedGoogle Scholar
  62. Nesbitt M, Francke U (1971) Linkage groups II and XII of the mouse: cytological localization by fluorochrome staining. Science 174:60–62PubMedCrossRefGoogle Scholar
  63. Nesbitt MN, Francke U (1973) A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41:145–158PubMedCrossRefGoogle Scholar
  64. Nowell PC, Hungerford DA (1962) The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 132:65–66CrossRefGoogle Scholar
  65. Nowell PC, Hungerford DA (1964) Chromosome changes following irradiation in mammals. Ann N Y Acad Sci 114:252–258PubMedCrossRefGoogle Scholar
  66. Ohno S, Babonits M, Wiener F, Spira J, Klein G, Potter M (1979) Nonrandom chromosome changes involving the Ig gene-carrying chromosomes 12 and 6 in pristane-induced mouse plasmacytomas. Cell 18:1001–1007PubMedCrossRefGoogle Scholar
  67. Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, Ried T (2006) Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc 1:3129–3142PubMedCrossRefGoogle Scholar
  68. Page SL, Earnshaw WC, Choo KH, Shaffer LG (1995) Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Hum Mol Genet 4:289–294PubMedCrossRefGoogle Scholar
  69. Painter TS (1926) The chromosomes of rodents. Science 64:336PubMedCrossRefGoogle Scholar
  70. Park SS, Kim JS, Tessarollo L et al (2005) Insertion of c-Myc into Igh induces B-cell and plasma-cell neoplasms in mice. Cancer Res 65:1306–1315PubMedCrossRefGoogle Scholar
  71. Petersen S, Casellas R, Reina-San-Martin B et al (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414:660–665PubMedCrossRefGoogle Scholar
  72. Petersen-Mahrt SK, Harris RS, Neuberger MS (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418:99–103PubMedCrossRefGoogle Scholar
  73. Petiniot LK, Weaver Z, Vacchio M et al (2002) RAG-mediated V(D)J recombination is not essential for tumorigenesis in Atm-deficient mice. Mol Cell Biol 22:3174–3177PubMedCrossRefGoogle Scholar
  74. Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424:103–107PubMedCrossRefGoogle Scholar
  75. Potter M (2007) The early history of plasma cell tumors in mice, 1954–1976. Adv Cancer Res 98:17–51PubMedCrossRefGoogle Scholar
  76. Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS (2002) Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12:1748–1755PubMedCrossRefGoogle Scholar
  77. Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC (2003) Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 4:452–456PubMedCrossRefGoogle Scholar
  78. Ried T (2009) Homage to Theodor Boveri (1862–1915): Boveri’s theory of cancer as a disease of the chromosomes, and the landscape of genomic imbalances in human carcinomas. Environ Mol Mutagen 50(8):593–601PubMedCrossRefGoogle Scholar
  79. Ried T, Heselmeyer-Haddad K, Blegen H, Schrock E, Auer G (1999) Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosomes Cancer 25:195–204PubMedCrossRefGoogle Scholar
  80. Rockwood LD, Torrey TA, Kim JS et al (2002) Genomic instability in mouse Burkitt lymphoma is dominated by illegitimate genetic recombinations, not point mutations. Oncogene 21:7235–7240PubMedCrossRefGoogle Scholar
  81. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogeneous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293PubMedCrossRefGoogle Scholar
  82. Russell SW, Francke U, Buettner L, Cochrane CG (1974) Modes of growth and spread of a transplantable, virus-producing murine (Moloney) sarcoma: karyotypic analyses. J Natl Cancer Inst 53:801–806PubMedGoogle Scholar
  83. Schaeffer AJ, Nguyen M, Liem A et al (2004) E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice. Cancer Res 64:538–546PubMedCrossRefGoogle Scholar
  84. Schnedl W (1971) The karyotype of the mouse Chromosoma 35:111–116CrossRefGoogle Scholar
  85. Schröck E, du Manoir S, Veldman T et al (1996) Science 26;273(5274):494–497CrossRefGoogle Scholar
  86. Shepard JS, Wurster-Hill DH, Pettengill OS, Sorenson GD (1974) Giemsa-banded chromosomes of mouse myeloma in relationship to oncogenicity. Cytogenet Cell Genet 13:279–309PubMedCrossRefGoogle Scholar
  87. Speel EJ, Ramaekers FC, Hopman AH (1995) Cytochemical detection systems for in situ hybridization, and the combination with immunocytochemistry, ‘who is still afraid of red, green and blue?’. Histochem J 27:833–858PubMedGoogle Scholar
  88. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375PubMedCrossRefGoogle Scholar
  89. Srivastava M, Montagna C, Leighton X et al (2003) Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/−) mouse. Proc Natl Acad Sci USA 100:14287–14292PubMedCrossRefGoogle Scholar
  90. Telenius H, Pelear AH, Tunnacliffe A et al (1992a) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow sorted chromosomes. Genes ChromosomCancer 4:267–3Google Scholar
  91. Telenius H, Carter NP, Bebb CE, Norednskjöld M, Ponder BAJ, Tunnacliffe A (1992b) Degenerate oligonucleotide-primed PCR (DOP-PCR): general amplification of target DNA by a single degenerate primer. Genomics 13:718–725PubMedCrossRefGoogle Scholar
  92. Tjio JH, Levan A (1956) The chromosome number in man. Hereditas 42:1–6CrossRefGoogle Scholar
  93. Toledo F, Buttin G, Debatisse M (1993) The origin of chromosome rearrangements at early stages of AMPD2 gene amplification in Chinese hamster cells. Curr Biol 3:255–264PubMedCrossRefGoogle Scholar
  94. Vrba M, Donner L (1964) Chromosome numbers and karyotypes of two rat tumours induced by Rous sarcoma virus in vitro. Folia Biol (Praha) 10:373–380Google Scholar
  95. Weaver ZA, McCormack SJ, Liyanage M et al (1999) A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 25:251–260PubMedCrossRefGoogle Scholar
  96. Weaver Z, Montagna C, Xu X et al (2002) Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21:5097–5107PubMedCrossRefGoogle Scholar
  97. Wiener F, Babonits M, Spira J, Klein G, Potter M (1980) Cytogenetic studies on IgA/lambda-producing murine plasmacytomas: regular occurrence of a T(12;15) translocation. Somatic Cell Genet 6:731–738PubMedCrossRefGoogle Scholar
  98. Winge O (1930) Zytologische Untersuchungen über die Natur maligner Tumoren. II Teerkarzinome bei Mäusen. Z Zellforsch Mikrosk Anat 10:397–423CrossRefGoogle Scholar
  99. Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM (2008) Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 28:1713–1723PubMedCrossRefGoogle Scholar
  100. Yosida TH (1952) Cytological studies on cancer. V. Heteroplastic transplantations of the Yoshida sarcoma, with special regard to the behaviour of tumor cells. Gan 43:35–43PubMedGoogle Scholar
  101. Zech L, Evans EP, Ford CE, Gropp A (1972) Banding patterns in mitotic chromosomes of tobacco mouse. Exp Cell Res 70:263–268PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Genetics BranchCenter for Cancer Research, National Institutes of Health/National Cancer InstituteBethesdaUSA
  2. 2.Division of Cancer Treatment and DiagnosisNational Cancer Institute, NIHBethesdaUSA

Personalised recommendations