Genomic DNA Copy Number Alterations in Mouse Cancer Models and Human Cancer

  • Donna G. Albertson


The development of solid tumors is associated with the acquisition of genetic and epigenetic alterations. Although these changes may be brought about at the genomic level in a variety of ways, genomic DNA copy number aberrations are particularly frequent in solid tumors and are expected to contribute to tumor evolution by copy number induced alterations in gene expression. Mouse cancer models recapitulate genomic alterations observed in human tumors to varying degrees. Comparison of aberrations in tumor genomes in mouse models and human cancer has facilitated the identification of oncogenes and tumor suppressors, as well as polymorphic variants contributing to individual cancer susceptibility.


Oral Squamous Cell Carcinoma Comparative Genomic Hybridization Genomic Alteration Copy Number Change Array Comparative Genomic Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albertson DG (2006) Gene amplification in cancer. Trends Genet 22:447–455PubMedCrossRefGoogle Scholar
  2. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645PubMedCrossRefGoogle Scholar
  3. Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, Tibshirani R, Maitra A, Pollack JR (2005) Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7:556–562PubMedCrossRefGoogle Scholar
  4. Bastian BC, Kashani-Sabet M, Hamm H, Godfrey T, Moore DH 2nd, Brocker EB, LeBoit PE, Pinkel D (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60:1968–1973PubMedGoogle Scholar
  5. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase rna. Cell 91:25–34PubMedCrossRefGoogle Scholar
  6. Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) P53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538PubMedCrossRefGoogle Scholar
  7. Collins C, Rommens JM, Kowbel D, Godfrey T, Tanner M, Hwang SI, Polikoff D, Nonet G, Cochran J, Myambo K, Jay KE, Froula J, Cloutier T, Kuo WL, Yaswen P, Dairkee S, Giovanola J, Hutchinson GB, Isola J, Kallioniemi OP, Palazzolo M, Martin C, Ericsson C, Pinkel D, Albertson D, Li WB, Gray JW (1998) Positional cloning of znf217 and nabc1: Genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc Natl Acad Sci USA 95:8703–8708PubMedCrossRefGoogle Scholar
  8. Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, Raval A, Wu YZ, Rush LJ, Ross P, Molina JR, Otterson GA, Plass C (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis ciap1 and ciap2 as candidate oncogenes. Hum Mol Genet 12:791–801PubMedCrossRefGoogle Scholar
  9. Ewart-Toland A, Briassouli P, de Koning JP, Mao JH, Yuan J, Chan F, MacCarthy-Morrogh L, Ponder BA, Nagase H, Burn J, Ball S, Almeida M, Linardopoulos S, Balmain A (2003) Identification of stk6/stk15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet 34:403–412PubMedCrossRefGoogle Scholar
  10. Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA (2003) Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res 63:5021–5027PubMedGoogle Scholar
  11. Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, Segraves R, Dairkee S, Tokuyasu T, Ljung BM, Jain AN, McLennan J, Ziegler J, Chin K, Devries S, Feiler H, Gray JW, Waldman F, Pinkel D, Albertson DG (2006) Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6:96PubMedCrossRefGoogle Scholar
  12. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA (2000) Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 26:114–117PubMedCrossRefGoogle Scholar
  13. Greenberg RA, Chin L, Femino A, Lee KH, Gottlieb GJ, Singer RH, Greider CW, DePinho RA (1999) Short dysfunctional telomeres impair tumorigenesis in the ink4a(delta2/3) cancer-prone mouse. Cell 97:515–525PubMedCrossRefGoogle Scholar
  14. Griffith JK, Bryant JE, Fordyce CA, Gilliland FD, Joste NE, Moyzis RK (1999) Reduced telomere DNA content is correlated with genomic instability and metastasis in invasive human breast carcinoma. Breast Cancer Res Treat 54:59–64PubMedCrossRefGoogle Scholar
  15. Gysin S, Rickert P, Kastury K, McMahon M (2005) Analysis of genomic DNA alterations and mrna expression patterns in a panel of human pancreatic cancer cell lines. Genes Chromosomes Cancer 44:37–51PubMedCrossRefGoogle Scholar
  16. Hodgson JG, Malek T, Bornstein S, Hariono S, Ginzinger DG, Muller WJ, Gray JW (2005) Copy number aberrations in mouse breast tumors reveal loci and genes important in tumorigenic receptor tyrosine kinase signaling. Cancer Res 65:9695–9704PubMedCrossRefGoogle Scholar
  17. Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, Imamura M, Ohki M, Inazawa J (2001) Identification of ciap1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 61:6629–6634PubMedGoogle Scholar
  18. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821PubMedCrossRefGoogle Scholar
  19. Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, Flotte TJ, Duncan LM, Granter SR, Chin L (2006) Comparative oncogenomics identifies nedd9 as a melanoma metastasis gene. Cell 125:1269–1281PubMedCrossRefGoogle Scholar
  20. Liu ML, Von Lintig FC, Liyanage M, Shibata MA, Jorcyk CL, Ried T, Boss GR, Green JE (1998) Amplification of ki-ras and elevation of map kinase activity during mammary tumor progression in c3(1)/sv40 tag transgenic mice. Oncogene 17:2403–2411PubMedCrossRefGoogle Scholar
  21. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O’Neil J, Gutierrez A, Ivanova E, Perna I, Lin E, Mani V, Jiang S, McNamara K, Zaghlul S, Edkins S, Stevens C, Brennan C, Martin ES, Wiedemeyer R, Kabbarah O, Nogueira C, Histen G, Aster J, Mansour M, Duke V, Foroni L, Fielding AK, Goldstone AH, Rowe JM, Wang YA, Look AT, Stratton MR, Chin L, Futreal PA, DePinho RA (2007) Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447:966–971PubMedCrossRefGoogle Scholar
  22. Mitelman F, Johansson B, Mertens FE (2008) Mitelman database of chromosome aberrations in cancer.
  23. Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T (2002) Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of her2/neu define mouse mammary gland adenocarcinomas induced by mutant her2/neu. Oncogene 21:890–898PubMedCrossRefGoogle Scholar
  24. Montagna C, Lyu MS, Hunter K, Lukes L, Lowther W, Reppert T, Hissong B, Weaver Z, Ried T (2003) The septin 9 (msf) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res 63:2179–2187PubMedGoogle Scholar
  25. Parssinen J, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer. Br J Cancer 96:1258–1264PubMedCrossRefGoogle Scholar
  26. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211PubMedCrossRefGoogle Scholar
  27. Poremba C, Bocker W, Willenbring H, Schafer KL, Otterbach F, Burger H, Diallo R, Dockhorn-Dworniczak B (1998) Telomerase activity in human proliferative breast lesions. Int J Oncol 12:641–648PubMedGoogle Scholar
  28. Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159PubMedCrossRefGoogle Scholar
  29. Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C, Csikos T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJ, Demant P (2002) Ptprj is a candidate for the mouse colon-cancer susceptibility locus scc1 and is frequently deleted in human cancers. Nat Genet 31:295–300PubMedCrossRefGoogle Scholar
  30. Shi YP, Mohapatra G, Miller J, Hanahan D, Lander E, Gold P, Pinkel D, Gray J (1997) Fish probes for mouse chromosome identification. Genomics 45:42–47PubMedCrossRefGoogle Scholar
  31. Snijders AM, Hermsen MA, Baughman J, Buffart TE, Huey B, Gajduskova P, Roydasgupta R, Tokuyasu T, Meijer GA, Fridlyand J, Albertson DG (2008) Acquired genomic aberrations associated with methotrexate resistance vary with background genomic instability. Genes Chromosomes Cancer 47:71–83PubMedCrossRefGoogle Scholar
  32. Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC, Albertson DG (2005) Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24:4232–4242PubMedCrossRefGoogle Scholar
  33. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, Cremer T, Lichter P (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407PubMedCrossRefGoogle Scholar
  34. Weaver Z, Montagna C, Xu X, Howard T, Gadina M, Brodie SG, Deng CX, Ried T (2002) Mammary tumors in mice conditionally mutant for brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21:5097–5107PubMedCrossRefGoogle Scholar
  35. Weaver ZA, McCormack SJ, Liyanage M, du Manoir S, Coleman A, Schrock E, Dickson RB, Ried T (1999) A recurring pattern of chromosomal aberrations in mammary gland tumors of mmtv-cmyc transgenic mice. Genes Chromosomes Cancer 25:251–260PubMedCrossRefGoogle Scholar
  36. Weber RG, Scheer M, Born IA, Joos S, Cobbers JM, Hofele C, Reifenberger G, Zoller JE, Lichter P (1998) Recurrent chromosomal imbalances detected in biopsy material from oral premalignant and malignant lesions by combined tissue microdissection, universal DNA amplification, and comparative genomic hybridization. Am J Pathol 153:295–303PubMedCrossRefGoogle Scholar
  37. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, Mu D, Lucito R, Powers S, Lowe SW (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125:1253–1267PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Laboratory Medicine and UCSF Helen Diller Family Comprehensive Cancer Center, Cancer Research InstituteUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations