The Tumor Pathology of Genetically Engineered Mice: Genomic Pathology

  • Robert D. Cardiff


This chapter examines a newly emerging view of tumorigenesis by exploring the evidence that the molecular origin of the tumor determines the microscopic phenotype of the tumor. It is primarily based on the genetically engineered mice (GEM) expressing transgenic oncogenes or lacking homologs of human tumor-suppressor genes. The current data supporting this hypothesis are based primarily on mouse models of human prostate and breast cancers, but additional evidence is provided from other organ systems. The data demonstrate that the molecular origins of tumors create unique signature phenotypes that belong to distinct molecular pathways. The members of each pathway display unique interrelationships and dependencies. Many of the signature phenotypes mimic human tumor morphology in incredible detail and often represent involvement of the same genes. The pathology of tumorigenesis in GEM has important implications for human and comparative pathology.


Mammary Tumor Mouse Mammary Tumor Virus Prostatic Intraepithelial Neoplasia Islet Cell Tumor Granulosa Cell Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Cardiff wrote and takes sole responsibility for the text. The author is indebted to Drs. A.D. Borowsky, J.M. Ward, M. Bosenberg, J. Longfellow, J. Arbeit, A.Y. Nikitin, S. Kogan, J.J. Galvez, K. Aldape, and others who provided the outlines for the systemic pathology. We appreciate the willingness of investigators who shared unpublished data and images with us. This work has been supported, in part, by grants and contracts R01 CA089140, 22XS037A, U01 CA10102, and U01 CA084294 from the National Cancer Institute and National Centers for Research Resources (UR42-RR1495) from the NIH.


  1. Abate-Shen C, Shen MM (2000) Molecular genetics of prostate cancer. Genes Dev 14(19):2410–2434PubMedCrossRefGoogle Scholar
  2. Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP et al (2003) Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res 63(14):3886–3890PubMedGoogle Scholar
  3. Ali SH, DeCaprio JA (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11(1):15–23PubMedCrossRefGoogle Scholar
  4. Anonymous (2007) Mutant mice galore. Nature 446(7135):469–470Google Scholar
  5. Arbeit JM (1996) Transgenic models of epidermal neoplasia and multistage carcinogenesis. Cancer Surv 26:7–34PubMedGoogle Scholar
  6. Arbeit JM (2003) Mouse models of cervical cancer. Comp Med 53(3):256–258PubMedGoogle Scholar
  7. Austin CP (2004) The knock out mouse project. Nat Genet 36(2):921–924 [Commentary]PubMedCrossRefGoogle Scholar
  8. Balmain A, Nagase H (1998) Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet 14(4):139–144PubMedCrossRefGoogle Scholar
  9. Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R et al (2003) Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124(3):762–777PubMedCrossRefGoogle Scholar
  10. Borowsky A, Galvez J, Munn R, Cardiff R (2003) Comparative pathology of mouse models of human cancers. Comp Med 53(3):248–249Google Scholar
  11. Borowsky AD, Munn RJ, Galvez JJ, Cardiff RD, Ward JM, Morse HC 3rd et al (2004) Mouse models of human cancers (part 3). Comp Med 54(3):258–270PubMedGoogle Scholar
  12. Cardiff RD (1988) Cellular and molecular aspects of neoplastic progression in the mammary gland. Eur J Cancer Clin Oncol 24(1):15–20PubMedCrossRefGoogle Scholar
  13. Cardiff RD (1996) The biology of mammary transgenes: five rules. J Mammary Gland Biol Neoplasia 1(1):61–73PubMedCrossRefGoogle Scholar
  14. Cardiff RD (2001) Validity of mouse mammary tumour models for human breast cancer: comparative pathology. Microsc Res Tech 52(2):224–230PubMedCrossRefGoogle Scholar
  15. Cardiff RD (2003) Mouse models of human breast cancer. Comp Med 53(3):250–253PubMedGoogle Scholar
  16. Cardiff RD (2007) Pathologists needed to cope with mutant mice. Nature 447(7144):528PubMedCrossRefGoogle Scholar
  17. Cardiff RD, Aguilar-Cordova E (1988) Protoneoplasia revisited: the molecular biology of mouse mammary hyperplasia. Anticancer Res 8(5):925–933PubMedGoogle Scholar
  18. Cardiff RD, Kenney N (2007) Mouse mammary tumor biology: a short history. Adv Cancer Res 98:53–116PubMedCrossRefGoogle Scholar
  19. Cardiff RD, Muller WJ (1993) Transgenic mouse models of mammary tumorigenesis. Cancer Surv 16:97–113PubMedGoogle Scholar
  20. Cardiff RD, Munn RJ (1995) Comparative pathology of mammary tumorigenesis in transgenic mice. Cancer Lett 90(1):13–19PubMedCrossRefGoogle Scholar
  21. Cardiff RD, Wellings SR (1999) The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 4(1):105–122PubMedCrossRefGoogle Scholar
  22. Cardiff RD, Wellings SR, Faulkin LJ (1977) Biology of breast preneoplasia. Cancer 39(6 Suppl):2734–2746PubMedCrossRefGoogle Scholar
  23. Cardiff RD, Sinn E, Muller W, Leder P (1991) Transgenic oncogene mice. Tumor phenotype predicts genotype. Am J Pathol 139(3):495–501PubMedGoogle Scholar
  24. Cardiff RD, Ornitz D, Lee F, Moreadith R, Sinn E, Muller W et al (1992) Mammary morphogenesis and oncogenes. In: Breast cancer: progress in biology, clinical management and prevention. pp 41–55Google Scholar
  25. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al (2000a) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19(8):968–988PubMedCrossRefGoogle Scholar
  26. Cardiff RD, Wagner U, Henninghausen L (2000b) Mammary cancer in humans and mice: a tutorial for comparative pathology. The CD-ROM. J Mammary Gland Biol Neoplasia 5(2):243–244PubMedCrossRefGoogle Scholar
  27. Cardiff RD, Wagner U, Henninghausen L (2001) Mammary cancer in humans and mice: a tutorial for comparative pathology. Vet Pathol 38(4):357–358PubMedCrossRefGoogle Scholar
  28. Cardiff RD, Rosner A, Hogarth MA, Galvez JJ, Borowsky AD, Gregg JP (2004) Validation: the new challenge for pathology. Toxicol Pathol 32(Suppl 1):31–39PubMedCrossRefGoogle Scholar
  29. Cardiff RD, Munn RJ, Galvez JJ (2006a) The tumor pathology of genetically engineered mice: a new approach to molecular pathology. In: Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL (eds) The mouse in biomedical research: experimental biology and oncology, 2nd edn. Elsevier, New York, pp 581–622Google Scholar
  30. Cardiff RD, Anver MR, Boivin GP, Bosenberg MW, Maronpot RR, Molinolo AA et al (2006b) Precancer in mice: animal models used to understand, prevent, and treat human precancers. Toxicol Pathol 34(6):699–707PubMedCrossRefGoogle Scholar
  31. Cardiff RD, Ward JM, Barthold SW (2008a) ‘One medicine-one pathology’: are veterinary and human pathology prepared? Lab Invest 88(1):18–26PubMedCrossRefGoogle Scholar
  32. Cardiff RD, Ward JM, Barthold SW (2008b) ‘One medicine–one pathology’: are veterinary and human pathology prepared? Lab Invest 88(1):18–26PubMedCrossRefGoogle Scholar
  33. Carver BS, Pandolfi PP (2006) Mouse modeling in oncologic preclinical and translational research. Clin Cancer Res 12(18):5305–5311PubMedCrossRefGoogle Scholar
  34. Cecena G, Wen F, Cardiff RD, Oshima RG (2006) Differential sensitivity of mouse epithelial tissues to the polyomavirus middle T oncogene. Am J Pathol 168(1):310–320PubMedCrossRefGoogle Scholar
  35. Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD et al (2008) Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 172(1):236–246PubMedCrossRefGoogle Scholar
  36. Conrad PA, Mazet JA, Clifford D, Scott C, Wilkes M (2009) Evolution of a transdisciplinary “One Medicine-One Health” approach to global health education at the University of California, Davis. Prev Vet Med 92(4):268–274PubMedCrossRefGoogle Scholar
  37. Couto SS, Cardiff RD (2008) The genomic revolution and endocrine pathology. Endocr Pathol 19(3):139–147PubMedCrossRefGoogle Scholar
  38. Daley GQ (1993) Animal models of BCR/ABL-induced leukemias. Leuk Lymphoma 11(Suppl 1):57–60PubMedCrossRefGoogle Scholar
  39. Deckard-Janatpour K, Muller WJ, Chodosh LA, Gardner HP, Marquis ST, Coffey RJ et al (1997) Differential expression of the neu transgene in murine mammary tissues. Int J Oncol 11:235–244Google Scholar
  40. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B et al (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5):437–449PubMedCrossRefGoogle Scholar
  41. Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972PubMedCrossRefGoogle Scholar
  42. DiGiovanna MP, Lerman MA, Coffey RJ, Muller WJ, Cardiff RD, Stern DF (1998) Active signaling by Neu in transgenic mice. Oncogene 17(14):1877–1884PubMedCrossRefGoogle Scholar
  43. Donjacour AA, Thomson AA, Cunha GR (1998) Enlargement of the ampullary gland and seminal vesicle, but not the prostate in int-2/Fgf-3 transgenic mice. Differentiation 62(5):227–237PubMedCrossRefGoogle Scholar
  44. Dragani TA (2003) 10 years of mouse cancer modifier loci: human relevance. Cancer Res 63(12):3011–3018PubMedGoogle Scholar
  45. Dunn TB (1953) Morphology of mammary tumors in mice. In: Homburger F, Fishman WH (eds) The physiopathology of cancer. Cassel, London, pp 123–148Google Scholar
  46. Eckert RL, Crish JF, Balasubramanian S, Rorke EA (2000) Transgenic animal models of human papillomavirus-dependent disease. (Review). Int J Oncol 16(5):853–870PubMedGoogle Scholar
  47. Edelmann W, Umar A, Yang K, Heyer J, Kucherlapati M, Lia M et al (2000) The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res 60(4):803–807PubMedGoogle Scholar
  48. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3):223–238PubMedCrossRefGoogle Scholar
  49. Elson DA, Riley RR, Lacey A, Thordarson G, Talamantes FJ, Arbeit JM (2000) Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis. Cancer Res 60(5):1267–1275PubMedGoogle Scholar
  50. Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T (1999) Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 59(14):3379–3386PubMedGoogle Scholar
  51. Espina V, Geho D, Mehta AI, Petricoin EF 3rd, Liotta LA, Rosenblatt KP (2005) Pathology of the future: molecular profiling for targeted therapy. Cancer Invest 23(1):36–46PubMedGoogle Scholar
  52. Espina V, Heiby M, Pierobon M, Liotta LA (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7(5):647–657PubMedCrossRefGoogle Scholar
  53. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7(10):1998–2018PubMedCrossRefGoogle Scholar
  54. Evangelou AI, Winter SF, Huss WJ, Bok RA, Greenberg NM (2004) Steroid hormones, polypeptide growth factors, hormone refractory prostate cancer, and the neuroendocrine phenotype. J Cell Biochem 91(4):671–683PubMedCrossRefGoogle Scholar
  55. Fargiano AA, Desai KV, Green JE (2003) Interrogating mouse mammary cancer models: insights from gene expression profiling. J Mammary Gland Biol Neoplasia 8(3):321–334PubMedCrossRefGoogle Scholar
  56. Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY (2003) Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 63(13):3459–3463PubMedGoogle Scholar
  57. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R et al (2003) PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3(2):117–130PubMedCrossRefGoogle Scholar
  58. Furth PA (1998) SV40 rodent tumour models as paradigms of human disease: transgenic mouse models. Dev Biol Stand 94:281–287PubMedGoogle Scholar
  59. Galvez JJ, Cardiff RD, Munn RJ, Borowsky AD, Boivin GP, Groden J et al (2004) Mouse models of human cancers (Part 2). Comp Med 54(1):13–28PubMedGoogle Scholar
  60. Gardner MB, Rongey RW, Arnstein P, Estes JD, Sarma P, Huebner RJ et al (1970) Experimental transmission of feline fibrosarcoma to cats and dogs. Nature 226(5248):807–809PubMedCrossRefGoogle Scholar
  61. Gardner MB, Arnstein P, Johnson E, Rongey RW, Charman HP, Huebner RJ (1971) Feline sarcoma virus tumor induction in cats and dogs. J Am Vet Med Assoc 158(6 Suppl 2):1046–1053PubMedGoogle Scholar
  62. Green JE, Cardiff R, Hennighausen L, Wakefield L, Wagner U, Lee E et al (2002) Validation of transgenic mammary cancer models: goals of the NCI Mouse Models of Human Cancer Consortium and the mammary cancer CD-ROM. Transgenic Res 11(6):635–636PubMedCrossRefGoogle Scholar
  63. Gulmann C, Espina V, Petricoin E 3rd, Longo DL, Santi M, Knutsen T et al (2005) Proteomic analysis of apoptotic pathways reveals prognostic factors in follicular lymphoma. Clin Cancer Res 11(16):5847–5855PubMedCrossRefGoogle Scholar
  64. Hager JH, Hanahan D (1999) Tumor cells utilize multiple pathways to down-modulate apoptosis. Lessons from a mouse model of islet cell carcinogenesis. Ann N Y Acad Sci 887:150–163PubMedCrossRefGoogle Scholar
  65. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  66. Hill R, Song Y, Cardiff RD, Van Dyke T (2005) Heterogeneous tumor evolution initiated by loss of pRb function in a preclinical prostate cancer model. Cancer Res 65(22):10243–10254PubMedCrossRefGoogle Scholar
  67. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450PubMedCrossRefGoogle Scholar
  68. Holland EC (ed) (2004) Mouse models of human cancer. Wiley, Hoboken, NJ, pp 15–30Google Scholar
  69. Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP et al (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66(1):95–106PubMedCrossRefGoogle Scholar
  70. Kahn RE, Clouser DF, Richt JA (2009) Emerging infections: a tribute to the one medicine, one health concept. Zoonoses Public Health 56(6–7):407–428PubMedCrossRefGoogle Scholar
  71. Kaplan B, Kahn LH, Monath TP, Woodall J (2009) ‘ONE HEALTH’ and parasitology. Parasit Vectors 2(1):36PubMedCrossRefGoogle Scholar
  72. Karesh WB, Cook RA (2009) One world–one health. Clin Med 9(3):259–260PubMedGoogle Scholar
  73. Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS et al (1998) Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 78(3):319–333PubMedGoogle Scholar
  74. Kawakami TG, Buckley P, Huff S, McKain D, Fielding H (1973) A comparative study in vitro of a simian virus isolated from spontaneous woolly monkey fibrosarcoma and of a known feline fibrosarcoma virus. Bibl Haematol 39:236–243PubMedGoogle Scholar
  75. Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM et al (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 19:19Google Scholar
  76. Kirsten WH, Mayer LA (1969) Malignant lymphomas of extrathymic origin induced in rats by murine erythroblastosis virus. J Natl Cancer Inst 43(3):735–746PubMedGoogle Scholar
  77. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD et al (2002) Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100(1):238–245PubMedCrossRefGoogle Scholar
  78. Kumar R, Sukumar S, Barbacid M (1990) Activation of ras oncogenes preceding the onset of neoplasia. Science 248(4959):1101–1104PubMedCrossRefGoogle Scholar
  79. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC (2001) Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20(25):3247–3257PubMedCrossRefGoogle Scholar
  80. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100(26):15853–15858PubMedCrossRefGoogle Scholar
  81. Mahler JF, Stokes W, Mann PC, Takaoka M, Maronpot RR (1996) Spontaneous lesions in aging FVB/N mice. Toxicol Pathol 24(6):710–716PubMedCrossRefGoogle Scholar
  82. Masumori N, Thomas TZ, Chaurand P, Case T, Paul M, Kasper S et al (2001) A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 61(5):2239–2249PubMedGoogle Scholar
  83. Miyoshi K, Shillingford JM, Le Provost F, Gounari F, Bronson R, von Boehmer H et al (2002a) Activation of beta-catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc Natl Acad Sci USA 99(1):219–224PubMedCrossRefGoogle Scholar
  84. Miyoshi K, Rosner A, Nozawa M, Byrd C, Morgan F, Landesman-Bollag E et al (2002b) Activation of different Wnt/beta-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 21(36):5548–5556PubMedCrossRefGoogle Scholar
  85. Morse HC 3rd, Anver MR, Fredrickson TN, Haines DC, Harris AW, Harris NL et al (2002) Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100(1):246–258PubMedCrossRefGoogle Scholar
  86. Moser AR, Hegge LF, Cardiff RD (2001) Genetic background affects susceptibility to mammary hyperplasias and carcinomas in Apc(min)/+ mice. Cancer Res 61(8):3480–3485PubMedGoogle Scholar
  87. Munger K (2002) The role of human papillomaviruses in human cancers. Front Biosci 7:d641–d649PubMedCrossRefGoogle Scholar
  88. Nagase H, Mao JH, Balmain A (1999) A subset of skin tumor modifier loci determines survival time of tumor-bearing mice. Proc Natl Acad Sci USA 96(26):15032–15037PubMedCrossRefGoogle Scholar
  89. Naharro G, Tronick SR, Rasheed S, Gardner MB, Aaronson SA, Robbins KC (1983) Molecular cloning of integrated Gardner-Rasheed feline sarcoma virus: genetic structure of its cell-derived sequence differs from that of other tyrosine kinase-coding onc genes. J Virol 47(3):611–619PubMedGoogle Scholar
  90. Nieto AI, Shyamala G, Galvez JJ, Cardiff RD (2003) Persistent hyperplasia in FVB/N. Comp Med 53(4):361–366Google Scholar
  91. Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D et al (2004) Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res 64(7):2307–2316PubMedCrossRefGoogle Scholar
  92. Nikitin AY, Matoso A, Roy-Burman P (2007) Prostate stem cells and cancer. Histol Histopathol 22(9):1043–1049PubMedGoogle Scholar
  93. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92(10):4482–4486PubMedCrossRefGoogle Scholar
  94. Park JH, Walls JE, Galvez JJ, Kim M, Abate-Shen C, Shen MM et al (2002) Prostatic intraepithelial neoplasia in genetically engineered mice. Am J Pathol 161(2):727–735PubMedCrossRefGoogle Scholar
  95. Powell WC, Cardiff RD, Cohen MB, Miller GJ, Roy-Burman P (2003) Mouse strains for prostate tumorigenesis based on genes altered in human prostate cancer. Curr Drug Targets 4(3):263–279PubMedCrossRefGoogle Scholar
  96. Radaelli E, Arnold A, Papanikolaou A, Garcia-Fernandez RA, Mattiello S, Scanziani E et al (2009a) Mammary tumor phenotypes in wild-type aging female FVB/N mice with pituitary prolactinomas. Vet Pathol 46(4):736–745PubMedCrossRefGoogle Scholar
  97. Radaelli E, Damonte P, Cardiff RD (2009b) Epithelial-mesenchymal transition in mouse mammary tumorigenesis. Future Oncol 5(8):1113–1127PubMedCrossRefGoogle Scholar
  98. Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR et al (2002) Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol 161(3):1087–1097PubMedCrossRefGoogle Scholar
  99. Saenz Robles MT, Symonds H, Chen J, Van Dyke T (1994) Induction versus progression of brain tumor development: differential functions for the pRB- and p53-targeting domains of simian virus 40T antigen. Mol Cell Biol 14(4):2686–2698PubMedGoogle Scholar
  100. Sass B, Dunn TB (1979) Classification of mouse mammary tumors in Dunn’s miscellaneous group including recently reported types. J Natl Cancer Inst 62(5):1287–1293PubMedGoogle Scholar
  101. Scherl A, Li JF, Cardiff RD, Schreiber-Agus N (2004) Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate 59(4):448–459PubMedCrossRefGoogle Scholar
  102. Schmidt EV (1999) The role of c-myc in cellular growth control. Oncogene 18(19):2988–2996PubMedCrossRefGoogle Scholar
  103. Schmidt EV (2004) The role of c-myc in regulation of translation initiation. Oncogene 23(18):3217–3221PubMedCrossRefGoogle Scholar
  104. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA et al (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64(6):2270–2305PubMedCrossRefGoogle Scholar
  105. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430–8435PubMedCrossRefGoogle Scholar
  106. Snyder SP, Theilen GH (1969) Transmissible feline fibrosarcoma. Nature 221(185):1074–1075PubMedCrossRefGoogle Scholar
  107. Song Z, Wu X, Powell WC, Cardiff RD, Cohen MB, Tin RT et al (2002) Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia. Cancer Res 62(17):5096–5105PubMedGoogle Scholar
  108. Stevens LC (1980) Teratocarcinogenesis and spontaneous parthenogenesis in mice. Results Probl Cell Differ 11:265–274PubMedGoogle Scholar
  109. Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S et al (2002) An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am J Pathol 160(6):1973–1980PubMedCrossRefGoogle Scholar
  110. van Leeuwen F, Nusse R (1995) Oncogene activation and oncogene cooperation in MMTV-induced mouse mammary cancer. Semin Cancer Biol 6(3):127–133PubMedCrossRefGoogle Scholar
  111. Verma IM, Graham WR (1987) The fos oncogene. Adv Cancer Res 49:29–52PubMedCrossRefGoogle Scholar
  112. Wakefield LM, Thordarson G, Anver M, Cardiff RD (2003) Spontaneous pituitary abnormalities and mammary hyperplasias in FVB/NCr mice: implications for mouse modeling. Comp Med 53(4):348–356Google Scholar
  113. Weiss WA, Israel M, Cobbs C, Holland E, James CD, Louis DN et al (2002) Neuropathology of genetically engineered mice: consensus report and recommendations from an international forum. Oncogene 21(49):7453–7463PubMedCrossRefGoogle Scholar
  114. White DE, Cardiff RD, Dedhar S, Muller WJ (2001) Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice. Oncogene 20(48):7064–7072PubMedCrossRefGoogle Scholar
  115. Yew N, Strobel M, Vande Woude GF (1993) Mos and the cell cycle: the molecular basis of the transformed phenotype. Curr Opin Genet Dev 3(1):19–25PubMedCrossRefGoogle Scholar
  116. Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411(6841):1017–1021PubMedCrossRefGoogle Scholar
  117. Zhou Z, Flesken-Nikitin A, Nikitin AY (2007) Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 67(12):5683–5690PubMedCrossRefGoogle Scholar
  118. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5):342–350PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory Medicine, Center for Comparative Medicine, Center for Genomic PathologyUniversity of CaliforniaDavisUSA

Personalised recommendations