Advertisement

Target-Selected ENU Mutagenesis to Develop Cancer Models in the Rat

  • Bart M. G. Smits
  • Edwin Cuppen
  • Michael N. Gould
Chapter

Abstract

Over the last decade, the laboratory rat has matured as a genetic model organism. One of the most valuable additions to its genetic toolbox is the ability to inactivate genes of interest using N-ethyl-N-nitrosourea mutagenesis-based reverse genetics. The Gould lab (McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, USA) and the Cuppen lab (Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands) have developed this technology for a variety of rat strains. This resulted in the identification and characterization of a number of novel rat models, including novel models for breast and colon cancer. This chapter describes the establishment of the rat knockout technology and the characterization of the rat knockout models for the tumor suppressor genes APC, BRCA1, BRCA2, and MSH6.

Keywords

Quantitative Trait Locus Adenomatous Polyposis Coli Lynch Syndrome Premature Stop Codon Sleep Beauty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Dr. James Amos-Landgraf (University of Wisconsin – Madison) for kindly providing an endoscopic picture of a rat colonic adenoma marked with a tattoo. We are grateful to Mr. Ruben van Boxtel (Hubrecht Institute – Utrecht, Netherlands) for critically reading the manuscript. BMGS has been supported by a Postdoctoral Award from the Era of Hope Breast Cancer Research Program of the Department of Defense.

References

  1. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC (2008) Nat Genet 40(5):516–22. ReviewGoogle Scholar
  2. Akiyama Y, Sato H, Yamada T, Nagasaki H, Tsuchiya A, Abe R, Yuasa Y (1997) Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 57:3920–3923PubMedGoogle Scholar
  3. Amos-Landgraf JM, Kwong LN, Kendziorski CM, Reichelderfer M, Torrealba J, Weichert J, Haag JD, Chen KS, Waller JL, Gould MN et al (2007) A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc Natl Acad Sci USA 104:4036–4041PubMedCrossRefGoogle Scholar
  4. Aoki K, Tamai Y, Horiike S, Oshima M, Taketo MM (2003) Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Delta716 Cdx2+/− compound mutant mice. Nat Genet 35:323–330PubMedCrossRefGoogle Scholar
  5. Beier DR (2000) Sequence-based analysis of mutagenized mice. Mamm Genome 11:594–597PubMedCrossRefGoogle Scholar
  6. Bentley A, MacLennan B, Calvo J, Dearolf CR (2000) Targeted recovery of mutations in Drosophila. Genetics 156:1169–1173PubMedGoogle Scholar
  7. Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG, Hollema H, Karrenbeld A, Buys CH et al (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70:26–37PubMedCrossRefGoogle Scholar
  8. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–231PubMedCrossRefGoogle Scholar
  9. Brodie SG, Xu X, Li C, Kuo A, Leder P, Deng CX (2001) Inactivation of p53 tumor suppressor gene acts synergistically with c-neu oncogene in salivary gland tumorigenesis. Oncogene 20:1445–1454PubMedCrossRefGoogle Scholar
  10. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512PubMedCrossRefGoogle Scholar
  11. Castilla LH, Couch FJ, Erdos MR, Hoskins KF, Calzone K, Garber JE, Boyd J, Lubin MB, Deshano ML, Brody LC et al (1994) Mutations in the BRCA1 gene in families with early onset breast and ovarian cancer. Nat Genet 8:387–391PubMedCrossRefGoogle Scholar
  12. Chimp Genome Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  13. Coghill EL, Hugill A, Parkinson N, Davison C, Glenister P, Clements S, Hunter J, Cox RD, Brown SD (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat Genet 30:255–256PubMedCrossRefGoogle Scholar
  14. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484PubMedCrossRefGoogle Scholar
  15. Concepcion D, Seburn KL, Wen G, Frankel WN, Hamilton BA (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168:953–959PubMedCrossRefGoogle Scholar
  16. Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294:92–94PubMedCrossRefGoogle Scholar
  17. Cotroneo MS, Haag JD, Zan Y, Lopez CC, Thuwajit P, Petukhova GV, Camerini-Otero RD, Gendron-Fitzpatrick A, Griep AE, Murphy CJ et al (2007) Characterizing a rat Brca2 knockout model. Oncogene 26:1626–1635PubMedCrossRefGoogle Scholar
  18. Cuppen E, Gort E, Hazendonk E, Mudde J, van de Belt J, Nijman IJ, Guryev V, Plasterk RH (2007) Efficient target-selected mutagenesis in Caenorhabditis elegans: toward a knockout for every gene. Genome Res 17:649–658PubMedCrossRefGoogle Scholar
  19. de Wind N, Dekker M, Claij N, Jansen L, van Klink Y, Radman M, Riggins G, van der Valk M, Van’t Wout K, te Riele H (1999) HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23:359–362PubMedCrossRefGoogle Scholar
  20. Edelmann W, Yang K, Umar A, Heyer J, Lau K, Fan K, Liedtke W, Cohen PE, Kane MF, Lipford JR et al (1997) Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91:467–477PubMedCrossRefGoogle Scholar
  21. Eker R, Mossige J (1961) A dominant gene for renal adenomas in the Rat. Nature 189:858–859CrossRefGoogle Scholar
  22. Evers B, Jonkers J (2006) Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene 25:5885–5897PubMedCrossRefGoogle Scholar
  23. Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61:7369–7374PubMedGoogle Scholar
  24. Fodde R, Edelmann W, Yang K, van Leeuwen C, Carlson C, Renault B, Breukel C, Alt E, Lipkin M, Khan PM et al (1994) A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 91:8969–8973PubMedCrossRefGoogle Scholar
  25. Friedman LS, Ostermeyer EA, Szabo CI, Dowd P, Lynch ED, Rowell SE, King MC (1994) Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet 8:399–404PubMedCrossRefGoogle Scholar
  26. Gibbs RAGM, Metzker WML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521PubMedCrossRefGoogle Scholar
  27. Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298:2345–2349PubMedCrossRefGoogle Scholar
  28. Goodfellow PJ, Buttin BM, Herzog TJ, Rader JS, Gibb RK, Swisher E, Look K, Walls KC, Fan MY, Mutch DG (2003) Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci USA 100:5908–5913PubMedCrossRefGoogle Scholar
  29. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384PubMedCrossRefGoogle Scholar
  30. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  31. Guryev V, Berezikov E, Malik R, Plasterk RH, Cuppen E (2004) Single nucleotide polymorphisms associated with rat expressed sequences. Genome Res 14:1438–1443PubMedCrossRefGoogle Scholar
  32. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early onset familial breast cancer to chromosome 17q21. Science 250:1684–1689PubMedCrossRefGoogle Scholar
  33. Harbers K, Jahner D, Jaenisch R (1981) Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal. Nature 293:540–542PubMedCrossRefGoogle Scholar
  34. Hitotsumachi S, Carpenter DA, Russell WL (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc Natl Acad Sci USA 82:6619–6621PubMedCrossRefGoogle Scholar
  35. Homberg JR, Olivier JD, Smits BM, Mul JD, Mudde J, Verheul M, Nieuwenhuizen OF, Cools AR, Ronken E, Cremers T et al (2007) Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system. Neuroscience 146:1662–1676PubMedCrossRefGoogle Scholar
  36. Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M et al (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447PubMedCrossRefGoogle Scholar
  37. Jacob HJ, Kwitek AE (2002) Rat genetics: attaching physiology and pharmacology to the genome. Nat Rev Genet 3:33–42PubMedCrossRefGoogle Scholar
  38. Jansen G, Hazendonk E, Thijssen KL, Plasterk RH (1997) Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet 17:119–121PubMedCrossRefGoogle Scholar
  39. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425PubMedCrossRefGoogle Scholar
  40. Justice MJ, Carpenter DA, Favor J, Neuhauser-Klaus A, Hrabe de Angelis M, Soewarto D, Moser A, Cordes S, Miller D, Chapman V et al (2000) Effects of ENU dosage on mouse strains. Mamm Genome 11:484–488PubMedCrossRefGoogle Scholar
  41. Keays DA, Clark TG, Flint J (2006) Estimating the number of coding mutations in genotypic- and phenotypic-driven N-ethyl-N-nitrosourea (ENU) screens. Mamm Genome 17:230–238PubMedCrossRefGoogle Scholar
  42. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665PubMedCrossRefGoogle Scholar
  43. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedCrossRefGoogle Scholar
  44. Kitada K, Ishishita S, Tosaka K, Takahashi R, Ueda M, Keng VW, Horie K, Takeda J (2007) Transposon-tagged mutagenesis in the rat. Nat Methods 4:131–133PubMedCrossRefGoogle Scholar
  45. Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA 86:8927–8931PubMedCrossRefGoogle Scholar
  46. Kolodner RD, Tytell JD, Schmeits JL, Kane MF, Gupta RD, Weger J, Wahlberg S, Fox EA, Peel D, Ziogas A et al (1999) Germ-line msh6 mutations in colorectal cancer families. Cancer Res 59:5068–5074PubMedGoogle Scholar
  47. Kwitek AE, Gullings-Handley J, Yu J, Carlos DC, Orlebeke K, Nie J, Eckert J, Lemke A, Andrae JW, Bromberg S et al (2004) High-density rat radiation hybrid maps containing over 24,000 SSLPs, genes, and ESTs provide a direct link to the rat genome sequence. Genome Res 14:750–757PubMedCrossRefGoogle Scholar
  48. Lander ESLM, Birren LB, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  49. Lazar J, Moreno C, Jacob HJ, Kwitek AE (2005) Impact of genomics on research in the rat. Genome Res 15:1717–1728PubMedCrossRefGoogle Scholar
  50. Lindblad-Toh KCM, Mikkelsen WTS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819PubMedCrossRefGoogle Scholar
  51. Lindsey JR (1979) Historical foundations. Academic Press, New YorkGoogle Scholar
  52. Lu B, Geurts AM, Poirier C, Petit DC, Harrison W, Overbeek PA, Bishop CE (2007) Generation of rat mutants using a coat color-tagged sleeping beauty transposon system. Mamm Genome 18:338–346PubMedCrossRefGoogle Scholar
  53. Lynch HT, Smyrk T (1996) Hereditary nonpolyposis colorectal cancer (Lynch syndrome). An updated review Cancer 78:1149–1167Google Scholar
  54. Mashimo T, Yanagihara K, Tokuda S, Voigt B, Takizawa A, Nakajima R, Kato M, Hirabayashi M, Kuramoto T, Serikawa T. (2008) An ENinduced mutant archive for gene targeting in rats. Nat Genet 40(5):514–5. No abstract availableGoogle Scholar
  55. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457PubMedCrossRefGoogle Scholar
  56. McCarthy A, Savage K, Gabriel A, Naceur C, Reis-Filho JS, Ashworth A (2007) A mouse model of basal-like breast carcinoma with metaplastic elements. J Pathol 211:389–398PubMedCrossRefGoogle Scholar
  57. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRefGoogle Scholar
  58. Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M, Igari T, Koike M, Chiba M, Mori T (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17:271–272PubMedCrossRefGoogle Scholar
  59. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324PubMedCrossRefGoogle Scholar
  60. Mullins LJ, Brooker G, Mullins JJ (2002) Transgenesis in the rat. Methods Mol Biol 180:255–270PubMedGoogle Scholar
  61. Nagase H, Nakamura Y (1993) Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat 2:425–434PubMedCrossRefGoogle Scholar
  62. Nakatsukasa E, Inomata T, Ikeda T, Shino M, Kashiwazaki N (2001) Generation of live rat offspring by intrauterine insemination with epididymal spermatozoa cryopreserved at −196 degrees C. Reproduction 122:463–467PubMedCrossRefGoogle Scholar
  63. Nakatsukasa E, Kashiwazaki N, Takizawa A, Shino M, Kitada K, Serikawa T, Hakamata Y, Kobayashi E, Takahashi R, Ueda M et al (2003) Cryopreservation of spermatozoa from closed colonies, and inbred, spontaneous mutant, and transgenic strains of rats. Comp Med 53:639–641PubMedGoogle Scholar
  64. Nandi S, Guzman RC, Yang J (1995) Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA 92:3650–3657PubMedCrossRefGoogle Scholar
  65. Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, Spurr N, Gray IC, Vizor L, Brooker D, Whitehill E et al (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443PubMedCrossRefGoogle Scholar
  66. Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome 11:478–483PubMedCrossRefGoogle Scholar
  67. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M (1995) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92:4482–4486PubMedCrossRefGoogle Scholar
  68. Paigen K (2003) One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 163:1–7PubMedGoogle Scholar
  69. Quwailid MM, Hugill A, Dear N, Vizor L, Wells S, Horner E, Fuller S, Weedon J, McMath H, Woodman P et al (2004) A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15:585–591PubMedCrossRefGoogle Scholar
  70. Russell WL, Hunsicker PR, Carpenter DA, Cornett CV, Guinn GM (1982a) Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci USA 79:3592–3593PubMedCrossRefGoogle Scholar
  71. Russell WL, Hunsicker PR, Raymer GD, Steele MH, Stelzner KF, Thompson HM (1982b) Dose–response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci USA 79:3589–3591PubMedCrossRefGoogle Scholar
  72. Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, Phipps EL (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA 76:5818–5819PubMedCrossRefGoogle Scholar
  73. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278PubMedGoogle Scholar
  74. Samuelson DJ, Hesselson SE, Aperavich BA, Zan Y, Haag JD, Trentham-Dietz A, Hampton JM, Mau B, Chen KS, Baynes C et al (2007) Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk. Proc Natl Acad Sci USA 104:6299–6304PubMedCrossRefGoogle Scholar
  75. Smits BM, Cotroneo MS, Haag JD, Gould MN (2006a) Genetically engineered rat models for breast cancer. Breast Dis 28:53–61Google Scholar
  76. Smits BM, Cuppen E (2006) Rat genetics: the next episode. Trends Genet 22:232–240PubMedCrossRefGoogle Scholar
  77. Smits BM, Haag JD, Gould MN, Cuppen E (2008) Rat knockout and mutant models. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana Press, Totowa, New Jersey, pp 171–178CrossRefGoogle Scholar
  78. Smits BM, Mudde J, Plasterk RH, Cuppen E (2004) Target-selected mutagenesis of the rat. Genomics 83:332–334PubMedCrossRefGoogle Scholar
  79. Smits BM, Mudde JB, van de Belt J, Verheul M, Olivier J, Homberg J, Guryev V, Cools AR, Ellenbroek BA, Plasterk RH et al (2006b) Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis. Pharmacogenet Genomics 16:159–169PubMedGoogle Scholar
  80. Smits BM, Peters TA, Mul JD, Croes HJ, Fransen JA, Beynon AJ, Guryev V, Plasterk RH, Cuppen E (2005) Identification of a rat model for usher syndrome type 1B by N-ethyl-N-nitrosourea mutagenesis-driven forward genetics. Genetics 170:1887–1896PubMedCrossRefGoogle Scholar
  81. Sodir NM, Chen X, Park R, Nickel AE, Conti PS, Moats R, Bading JR, Shibata D, Laird PW (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66:8430–8438PubMedCrossRefGoogle Scholar
  82. The Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 91:1310–1316CrossRefGoogle Scholar
  83. Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850PubMedCrossRefGoogle Scholar
  84. Thompson D, Easton DF (2002) Cancer Incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94:1358–1365PubMedGoogle Scholar
  85. Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW (1989) Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56:313–321PubMedCrossRefGoogle Scholar
  86. van Boxtel R, Toonen P, van Roekel H, Verheul M, Smits BM, Korving J, de Bruin A, Cuppen E (2008) Lack of DNA mismatch repair protein MSH6 in the rat results in hereditary non-polyposis colorectal cancer-like tumorigenesis. Carcinogenesis 29(6):1290–7PubMedCrossRefGoogle Scholar
  87. van Zeeland AA, de Groot A, Neuhauser-Klaus A (1990) DNA adduct formation in mouse testis by ethylating agents: a comparison with germ-cell mutagenesis. Mutat Res 231:55–62PubMedGoogle Scholar
  88. Venter JCMD, Myers AEW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  89. Wagner A, Hendriks Y, Meijers-Heijboer EJ, de Leeuw WJ, Morreau H, Hofstra R, Tops C, Bik E, Brocker-Vriends AH, van Der Meer C et al (2001) Atypical HNPCC owing to MSH6 germline mutations: analysis of a large Dutch pedigree. J Med Genet 38:318–322PubMedCrossRefGoogle Scholar
  90. Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB (1981) Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci USA 78:6376–6380PubMedCrossRefGoogle Scholar
  91. Waterston RHK, Birney Lindblad-Toh E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562PubMedCrossRefGoogle Scholar
  92. Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102PubMedCrossRefGoogle Scholar
  93. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707PubMedCrossRefGoogle Scholar
  94. Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meijers-Heijboer H, Lindhout D, Menko F, Vossen S et al (1999) Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet 23:142–144PubMedCrossRefGoogle Scholar
  95. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792PubMedCrossRefGoogle Scholar
  96. Wu Y, Berends MJ, Mensink RG, Kempinga C, Sijmons RH, van Der Zee AG, Hollema H, Kleibeuker JH, Buys CH, Hofstra RM (1999) Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet 65:1291–1298PubMedCrossRefGoogle Scholar
  97. Yang G, Scherer SJ, Shell SS, Yang K, Kim M, Lipkin M, Kucherlapati R, Kolodner RD, Edelmann W (2004) Dominant effects of an Msh6 missense mutation on DNA repair and cancer susceptibility. Cancer Cell 6:139–150PubMedCrossRefGoogle Scholar
  98. Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR, Hu R, Lopez-Guajardo CC, Brose HL, Porter KI et al (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21:645–651PubMedCrossRefGoogle Scholar
  99. Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A, Cozzi J (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302:1179PubMedCrossRefGoogle Scholar
  100. Zimdahl H, Nyakatura G, Brandt P, Schulz H, Hummel O, Fartmann B, Brett D, Droege M, Monti J, Lee YA et al (2004) A SNP map of the rat genome generated from cDNA sequences. Science 303:807PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bart M. G. Smits
    • 1
  • Edwin Cuppen
    • 2
  • Michael N. Gould
    • 1
  1. 1.McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin – MadisonMadisonUSA
  2. 2.Hubrecht Institute for Developmental Biology and Stem Cell ResearchSection Functional Genomics and BioinformaticsUtrechtThe Netherlands

Personalised recommendations