Using Recombineering Technology to Create Genetically Engineered Mouse Models



Our ability to manipulate the mouse genome has been the key to the generation of suitable mouse models of human diseases. This has been achieved by introducing foreign DNA either to ectopically express genes or to render endogenous genes nonfunctional by gene targeting technology. Genomic manipulation has been revolutionized by the availability of bacterial artificial chromosomes and the development of recombineering technology, a recombination-based method of genetic engineering. These have not only helped to simplify and reduce the time involved in genetic modification but have also led to the generation of mouse models that were not feasible earlier. In this chapter, we describe the recombineering technology and discuss its applications to generate knockout, knockin, or conditional gene targeting constructs. In addition, we describe how recombineering can be used to insert, delete, or create subtle alterations in the large DNA segments that can be used to generate transgenic mouse models.


Embryonic Stem Cell Selectable Marker Internal Ribosome Entry Site Mixed Lineage Leukemia loxP Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Drs. Kajal Biswas, Suhwan Chang, Lino Tessarollo, and Sergey Kuznetsov for critical review of the manuscript and Tammy Schroyer of the Publication Department for the illustrations. This research was supported by the Center for Cancer Research, National Cancer Institute, Department of Human and Health Services.


  1. Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330PubMedCrossRefGoogle Scholar
  2. Bedell MA, Largaespada DA, Jenkins NA, Copeland NG (1997) Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 11:11–43PubMedCrossRefGoogle Scholar
  3. Blomfield IC, Vaughn V, Rest RF, Eisenstein BI (1991) Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5:1447–1457PubMedCrossRefGoogle Scholar
  4. Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B (2002) Of mice and models: improved animal models for biomedical research. Physiol Genomics 11:115–132PubMedGoogle Scholar
  5. Bradley A, Zheng B, Liu P (1998) Thirteen years of manipulating the mouse genome: a personal history. Int J Dev Biol 42:943–950PubMedGoogle Scholar
  6. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28PubMedCrossRefGoogle Scholar
  7. Capecchi MR (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet 5:70–76PubMedCrossRefGoogle Scholar
  8. Casanova E, Fehsenfeld S, Mantamadiotis T, Lemberger T, Greiner E, Stewart AF, Schutz G (2001) A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis 31:37–42PubMedCrossRefGoogle Scholar
  9. Castilla LH, Couch FJ, Erdos MR, Hoskins KF, Calzone K, Garber JE, Boyd J, Lubin MB, Deshano ML, Brody LC et al (1994) Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat Genet 8:387–391PubMedCrossRefGoogle Scholar
  10. Cha RS, Zarbl H, Keohavong P, Thilly WG (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2:14–20PubMedGoogle Scholar
  11. Chan W, Costantino N, Li R, Lee SC, Su Q, Melvin D, Court DL, Liu P (2007) A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 35:e64PubMedCrossRefGoogle Scholar
  12. Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, Om J, Woychik RP, Magnuson T (2000) Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet 24:314–317PubMedCrossRefGoogle Scholar
  13. Clifford R, Schupbach T (1994) Molecular analysis of the Drosophila EGF receptor homolog reveals that several genetically defined classes of alleles cluster in subdomains of the receptor protein. Genetics 137:531–550PubMedGoogle Scholar
  14. Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779PubMedCrossRefGoogle Scholar
  15. Court DL, Swaminathan S, Yu D, Wilson H, Baker T, Bubunenko M, Sawitzke J, Sharan SK (2003) Mini-lambda: a tractable system for chromosome and BAC engineering. Gene 315:63–69PubMedCrossRefGoogle Scholar
  16. Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379:109–115PubMedCrossRefGoogle Scholar
  17. Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F, Yang YP, Petukhova GV, Eckhaus M, Feigenbaum L, Manova K, Kruhlak M, Camerini-Otero RD, Sharan S, Nussenzweig M, Nussenzweig A (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7:675–685PubMedCrossRefGoogle Scholar
  18. Doolittle DP, Davisson MT, Guidi JN, Green MC (1996) Catalog of mutant genes and polymorphic loci. In: Lyon SRMF, Brown SDM (eds) Genetic variants and strains of the laboratory mouse. Oxford University Press, Oxford, pp 17–854Google Scholar
  19. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 98:6742–6746PubMedCrossRefGoogle Scholar
  20. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147PubMedCrossRefGoogle Scholar
  21. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741PubMedCrossRefGoogle Scholar
  22. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925PubMedCrossRefGoogle Scholar
  23. Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870PubMedCrossRefGoogle Scholar
  24. Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  25. Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, Espineda I, Manalac C, deJong PJ, Conklin BR (2008) Marking embryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP BAC reporter. PLoS One 3:e2532PubMedCrossRefGoogle Scholar
  26. Huang JD, Mermall V, Strobel MC, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1998) Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations. Genetics 148:1963–1972PubMedGoogle Scholar
  27. Jasin M, Schimmel P (1984) Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments. J Bacteriol 159:783–786PubMedGoogle Scholar
  28. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653PubMedCrossRefGoogle Scholar
  29. Klinghoffer RA, Hamilton TG, Hoch R, Soriano P (2002) An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2:103–113PubMedCrossRefGoogle Scholar
  30. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643PubMedCrossRefGoogle Scholar
  31. Kuzminov A (1995) Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373–384PubMedCrossRefGoogle Scholar
  32. Lafontaine D, Tollervey D (1996) One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res 24:3469–3471PubMedCrossRefGoogle Scholar
  33. Lamb RS, Ward RE, Schweizer L, Fehon RG (1998) Drosophila coracle, a member of the protein 4.1 superfamily, has essential structural functions in the septate junctions and developmental functions in embryonic and adult epithelial cells. Mol Biol Cell 9:3505–3519PubMedGoogle Scholar
  34. Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65PubMedCrossRefGoogle Scholar
  35. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755PubMedCrossRefGoogle Scholar
  36. Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13:476–484PubMedCrossRefGoogle Scholar
  37. Matesic LE, Yip R, Reuss AE, Swing DA, O’Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA (2001) Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci USA 98:10238–10243PubMedCrossRefGoogle Scholar
  38. Means GD, Boyd Y, Willis CR, Derry JM (2001) Transgenic rescue of the tattered phenotype by using a BAC encoding Ebp. Mamm Genome 12:323–325PubMedCrossRefGoogle Scholar
  39. Melton DW (1994) Gene targeting in the mouse. Bioessays 16:633–638PubMedCrossRefGoogle Scholar
  40. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141PubMedCrossRefGoogle Scholar
  41. Mukherjee A, Soyal SM, Wheeler DA, Fernandez-Valdivia R, Nguyen J, DeMayo FJ, Lydon JP (2006) Targeting iCre expression to murine progesterone receptor cell-lineages using bacterial artificial chromosome transgenesis. Genesis 44:601–610PubMedCrossRefGoogle Scholar
  42. Murphy KC (1991) Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J Bacteriol 173:5808–5821PubMedGoogle Scholar
  43. Muyrers JP, Zhang Y, Benes V, Testa G, Ansorge W, Stewart AF (2000) Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep 1:239–243PubMedCrossRefGoogle Scholar
  44. Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27:1555–1557PubMedCrossRefGoogle Scholar
  45. Nagy A, Moens C, Ivanyi E, Pawling J, Gertsenstein M, Hadjantonakis AK, Pirity M, Rossant J (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr Biol 8:661–664PubMedCrossRefGoogle Scholar
  46. Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A, Weigl D, Nitzsche A, Hegemann B, Bird AW, Pelletier L, Kittler R, Hua S, Naumann R, Augsburg M, Sykora MM, Hofemeister H, Zhang Y, Nasmyth K, White KP, Dietzel S, Mechtler K, Durbin R, Stewart AF, Peters JM, Buchholz F, Hyman AA (2008) BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5:409–415PubMedCrossRefGoogle Scholar
  47. Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447PubMedCrossRefGoogle Scholar
  48. Scholz H, Bossone SA, Cohen HT, Akella U, Strauss WM, Sukhatme VP (1997) A far upstream cis-element is required for Wilms’ tumor-1 (WT1) gene expression in renal cell culture. J Biol Chem 272:32836–32846PubMedCrossRefGoogle Scholar
  49. Senatorov V, Malyukova I, Fariss R, Wawrousek EF, Swaminathan S, Sharan SK, Tomarev S (2006) Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci 26:11903–11914PubMedCrossRefGoogle Scholar
  50. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination based method of genetic engineering. Nat Protoc 4(2):206–223PubMedCrossRefGoogle Scholar
  51. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797PubMedCrossRefGoogle Scholar
  52. Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129:329–337PubMedGoogle Scholar
  53. Swaminathan S, Ellis HM, Waters LS, Yu D, Lee EC, Court DL, Sharan SK (2001) Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29:14–21PubMedCrossRefGoogle Scholar
  54. Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, Smith AJ, Smith AG, Stewart AF (2003) Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 21:443–447PubMedCrossRefGoogle Scholar
  55. Valarche I, de Graaff W, Deschamps J (1997) A 3′ remote control region is a candidate to modulate Hoxb-8 expression boundaries. Int J Dev Biol 41:705–714PubMedGoogle Scholar
  56. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659PubMedCrossRefGoogle Scholar
  57. van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164PubMedGoogle Scholar
  58. Vivian JL, Chen Y, Yee D, Schneider E, Magnuson T (2002) An allelic series of mutations in Smad2 and Smad4 identified in a genotype-based screen of N-ethyl-N-nitrosourea-mutagenized mouse embryonic stem cells. Proc Natl Acad Sci USA 99:15542–15547PubMedCrossRefGoogle Scholar
  59. Wackernagel W (1973) Genetic transformation in E. coli: the inhibitory role of the recBC DNase. Biochem Biophys Res Commun 51:306–311PubMedCrossRefGoogle Scholar
  60. Wakabayashi Y, Kikkawa Y, Matsumoto Y, Shinbo T, Kosugi S, Chou D, Furuya M, Jishage K, Noda T, Yonekawa H, Kominami R (1997) Genetic and physical delineation of the region of the mouse deafness mutation shaker-2. Biochem Biophys Res Commun 234:107–110PubMedCrossRefGoogle Scholar
  61. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36PubMedCrossRefGoogle Scholar
  62. Wilson SM, Yip R, Swing DA, O’Sullivan TN, Zhang Y, Novak EK, Swank RT, Russell LB, Copeland NG, Jenkins NA (2000) A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci USA 97:7933–7938PubMedCrossRefGoogle Scholar
  63. Wong QN, Ng VC, Lin MC, Kung HF, Chan D, Huang JD (2005) Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Res 33:e59PubMedCrossRefGoogle Scholar
  64. Wu S, Ying G, Wu Q, Capecchi MR (2008) A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat Protoc 3:1056–1076PubMedCrossRefGoogle Scholar
  65. Yamamoto T, Moerschell RP, Wakem LP, Ferguson D, Sherman F (1992) Parameters affecting the frequencies of transformation and co-transformation with synthetic oligonucleotides in yeast. Yeast 8:935–948PubMedCrossRefGoogle Scholar
  66. Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15:859–865PubMedCrossRefGoogle Scholar
  67. Yang Y, Sharan SK (2003) A simple two-step, ‘hit and fix’ method to generate subtle mutations in BACs using short denatured PCR fragments. Nucleic Acids Res 31:e80PubMedCrossRefGoogle Scholar
  68. Yang Y, Swaminathan S, Martin BK, Sharan SK (2003) Aberrant splicing induced by missense mutations in BRCA1: clues from a humanized mouse model. Hum Mol Genet 12:2121–2131PubMedCrossRefGoogle Scholar
  69. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983PubMedCrossRefGoogle Scholar
  70. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Mouse Cancer Genetics ProgramCenter for Cancer Research, National Cancer Institute at FrederickFrederickUSA

Personalised recommendations