Skip to main content

Using Recombineering Technology to Create Genetically Engineered Mouse Models

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research
  • 1371 Accesses

Abstract

Our ability to manipulate the mouse genome has been the key to the generation of suitable mouse models of human diseases. This has been achieved by introducing foreign DNA either to ectopically express genes or to render endogenous genes nonfunctional by gene targeting technology. Genomic manipulation has been revolutionized by the availability of bacterial artificial chromosomes and the development of recombineering technology, a recombination-based method of genetic engineering. These have not only helped to simplify and reduce the time involved in genetic modification but have also led to the generation of mouse models that were not feasible earlier. In this chapter, we describe the recombineering technology and discuss its applications to generate knockout, knockin, or conditional gene targeting constructs. In addition, we describe how recombineering can be used to insert, delete, or create subtle alterations in the large DNA segments that can be used to generate transgenic mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    Article  PubMed  CAS  Google Scholar 

  • Bedell MA, Largaespada DA, Jenkins NA, Copeland NG (1997) Mouse models of human disease. Part II: recent progress and future directions. Genes Dev 11:11–43

    Article  PubMed  Google Scholar 

  • Blomfield IC, Vaughn V, Rest RF, Eisenstein BI (1991) Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B (2002) Of mice and models: improved animal models for biomedical research. Physiol Genomics 11:115–132

    PubMed  CAS  Google Scholar 

  • Bradley A, Zheng B, Liu P (1998) Thirteen years of manipulating the mouse genome: a personal history. Int J Dev Biol 42:943–950

    PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet 5:70–76

    Article  PubMed  CAS  Google Scholar 

  • Casanova E, Fehsenfeld S, Mantamadiotis T, Lemberger T, Greiner E, Stewart AF, Schutz G (2001) A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis 31:37–42

    Article  PubMed  CAS  Google Scholar 

  • Castilla LH, Couch FJ, Erdos MR, Hoskins KF, Calzone K, Garber JE, Boyd J, Lubin MB, Deshano ML, Brody LC et al (1994) Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat Genet 8:387–391

    Article  PubMed  CAS  Google Scholar 

  • Cha RS, Zarbl H, Keohavong P, Thilly WG (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2:14–20

    PubMed  CAS  Google Scholar 

  • Chan W, Costantino N, Li R, Lee SC, Su Q, Melvin D, Court DL, Liu P (2007) A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 35:e64

    Article  PubMed  Google Scholar 

  • Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, Om J, Woychik RP, Magnuson T (2000) Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet 24:314–317

    Article  PubMed  CAS  Google Scholar 

  • Clifford R, Schupbach T (1994) Molecular analysis of the Drosophila EGF receptor homolog reveals that several genetically defined classes of alleles cluster in subdomains of the receptor protein. Genetics 137:531–550

    PubMed  CAS  Google Scholar 

  • Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    Article  PubMed  CAS  Google Scholar 

  • Court DL, Swaminathan S, Yu D, Wilson H, Baker T, Bubunenko M, Sawitzke J, Sharan SK (2003) Mini-lambda: a tractable system for chromosome and BAC engineering. Gene 315:63–69

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379:109–115

    Article  PubMed  CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F, Yang YP, Petukhova GV, Eckhaus M, Feigenbaum L, Manova K, Kruhlak M, Camerini-Otero RD, Sharan S, Nussenzweig M, Nussenzweig A (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7:675–685

    Article  PubMed  CAS  Google Scholar 

  • Doolittle DP, Davisson MT, Guidi JN, Green MC (1996) Catalog of mutant genes and polymorphic loci. In: Lyon SRMF, Brown SDM (eds) Genetic variants and strains of the laboratory mouse. Oxford University Press, Oxford, pp 17–854

    Google Scholar 

  • Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 98:6742–6746

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  PubMed  CAS  Google Scholar 

  • Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, Espineda I, Manalac C, deJong PJ, Conklin BR (2008) Marking embryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP BAC reporter. PLoS One 3:e2532

    Article  PubMed  Google Scholar 

  • Huang JD, Mermall V, Strobel MC, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1998) Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations. Genetics 148:1963–1972

    PubMed  CAS  Google Scholar 

  • Jasin M, Schimmel P (1984) Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments. J Bacteriol 159:783–786

    PubMed  CAS  Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Article  PubMed  CAS  Google Scholar 

  • Klinghoffer RA, Hamilton TG, Hoch R, Soriano P (2002) An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2:103–113

    Article  PubMed  CAS  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  PubMed  CAS  Google Scholar 

  • Kuzminov A (1995) Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373–384

    Article  PubMed  CAS  Google Scholar 

  • Lafontaine D, Tollervey D (1996) One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res 24:3469–3471

    Article  PubMed  CAS  Google Scholar 

  • Lamb RS, Ward RE, Schweizer L, Fehon RG (1998) Drosophila coracle, a member of the protein 4.1 superfamily, has essential structural functions in the septate junctions and developmental functions in embryonic and adult epithelial cells. Mol Biol Cell 9:3505–3519

    PubMed  CAS  Google Scholar 

  • Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13:476–484

    Article  PubMed  CAS  Google Scholar 

  • Matesic LE, Yip R, Reuss AE, Swing DA, O’Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA (2001) Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci USA 98:10238–10243

    Article  PubMed  CAS  Google Scholar 

  • Means GD, Boyd Y, Willis CR, Derry JM (2001) Transgenic rescue of the tattered phenotype by using a BAC encoding Ebp. Mamm Genome 12:323–325

    Article  PubMed  CAS  Google Scholar 

  • Melton DW (1994) Gene targeting in the mouse. Bioessays 16:633–638

    Article  PubMed  CAS  Google Scholar 

  • Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Soyal SM, Wheeler DA, Fernandez-Valdivia R, Nguyen J, DeMayo FJ, Lydon JP (2006) Targeting iCre expression to murine progesterone receptor cell-lineages using bacterial artificial chromosome transgenesis. Genesis 44:601–610

    Article  PubMed  CAS  Google Scholar 

  • Murphy KC (1991) Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J Bacteriol 173:5808–5821

    PubMed  CAS  Google Scholar 

  • Muyrers JP, Zhang Y, Benes V, Testa G, Ansorge W, Stewart AF (2000) Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep 1:239–243

    Article  PubMed  CAS  Google Scholar 

  • Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27:1555–1557

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Moens C, Ivanyi E, Pawling J, Gertsenstein M, Hadjantonakis AK, Pirity M, Rossant J (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr Biol 8:661–664

    Article  PubMed  CAS  Google Scholar 

  • Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A, Weigl D, Nitzsche A, Hegemann B, Bird AW, Pelletier L, Kittler R, Hua S, Naumann R, Augsburg M, Sykora MM, Hofemeister H, Zhang Y, Nasmyth K, White KP, Dietzel S, Mechtler K, Durbin R, Stewart AF, Peters JM, Buchholz F, Hyman AA (2008) BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5:409–415

    Article  PubMed  CAS  Google Scholar 

  • Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447

    Article  PubMed  CAS  Google Scholar 

  • Scholz H, Bossone SA, Cohen HT, Akella U, Strauss WM, Sukhatme VP (1997) A far upstream cis-element is required for Wilms’ tumor-1 (WT1) gene expression in renal cell culture. J Biol Chem 272:32836–32846

    Article  PubMed  CAS  Google Scholar 

  • Senatorov V, Malyukova I, Fariss R, Wawrousek EF, Swaminathan S, Sharan SK, Tomarev S (2006) Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci 26:11903–11914

    Article  PubMed  CAS  Google Scholar 

  • Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination based method of genetic engineering. Nat Protoc 4(2):206–223

    Article  PubMed  CAS  Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    Article  PubMed  CAS  Google Scholar 

  • Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129:329–337

    PubMed  CAS  Google Scholar 

  • Swaminathan S, Ellis HM, Waters LS, Yu D, Lee EC, Court DL, Sharan SK (2001) Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29:14–21

    Article  PubMed  CAS  Google Scholar 

  • Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, Smith AJ, Smith AG, Stewart AF (2003) Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 21:443–447

    Article  PubMed  CAS  Google Scholar 

  • Valarche I, de Graaff W, Deschamps J (1997) A 3′ remote control region is a candidate to modulate Hoxb-8 expression boundaries. Int J Dev Biol 41:705–714

    PubMed  CAS  Google Scholar 

  • Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659

    Article  PubMed  CAS  Google Scholar 

  • van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11:133–164

    PubMed  Google Scholar 

  • Vivian JL, Chen Y, Yee D, Schneider E, Magnuson T (2002) An allelic series of mutations in Smad2 and Smad4 identified in a genotype-based screen of N-ethyl-N-nitrosourea-mutagenized mouse embryonic stem cells. Proc Natl Acad Sci USA 99:15542–15547

    Article  PubMed  CAS  Google Scholar 

  • Wackernagel W (1973) Genetic transformation in E. coli: the inhibitory role of the recBC DNase. Biochem Biophys Res Commun 51:306–311

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi Y, Kikkawa Y, Matsumoto Y, Shinbo T, Kosugi S, Chou D, Furuya M, Jishage K, Noda T, Yonekawa H, Kominami R (1997) Genetic and physical delineation of the region of the mouse deafness mutation shaker-2. Biochem Biophys Res Commun 234:107–110

    Article  PubMed  CAS  Google Scholar 

  • Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed  Google Scholar 

  • Wilson SM, Yip R, Swing DA, O’Sullivan TN, Zhang Y, Novak EK, Swank RT, Russell LB, Copeland NG, Jenkins NA (2000) A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci USA 97:7933–7938

    Article  PubMed  CAS  Google Scholar 

  • Wong QN, Ng VC, Lin MC, Kung HF, Chan D, Huang JD (2005) Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Res 33:e59

    Article  PubMed  Google Scholar 

  • Wu S, Ying G, Wu Q, Capecchi MR (2008) A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat Protoc 3:1056–1076

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Moerschell RP, Wakem LP, Ferguson D, Sherman F (1992) Parameters affecting the frequencies of transformation and co-transformation with synthetic oligonucleotides in yeast. Yeast 8:935–948

    Article  PubMed  CAS  Google Scholar 

  • Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15:859–865

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Sharan SK (2003) A simple two-step, ‘hit and fix’ method to generate subtle mutations in BACs using short denatured PCR fragments. Nucleic Acids Res 31:e80

    Article  PubMed  Google Scholar 

  • Yang Y, Swaminathan S, Martin BK, Sharan SK (2003) Aberrant splicing induced by missense mutations in BRCA1: clues from a humanized mouse model. Hum Mol Genet 12:2121–2131

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Kajal Biswas, Suhwan Chang, Lino Tessarollo, and Sergey Kuznetsov for critical review of the manuscript and Tammy Schroyer of the Publication Department for the illustrations. This research was supported by the Center for Cancer Research, National Cancer Institute, Department of Human and Health Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam K. Sharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Philip, S., Sharan, S.K. (2012). Using Recombineering Technology to Create Genetically Engineered Mouse Models. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_3

Download citation

Publish with us

Policies and ethics