Skip to main content

Animal Models for Breast Cancer Prevention Research

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research

Abstract

Breast cancer is composed of a heterogeneous group of diseases which is characterized by differences in genetic mutations/aberrant oncogene expression, histopathological types, and metastatic potentials. Animal models are valuable tools for defining the molecular pathways in breast carcinogenesis. Various promising chemopreventive agents have been generated to target these pathways, resulting in significant progress in breast cancer prevention research. In this article, we review the animal models of breast cancer, including oncogene (c-Myc, Ras, simian virus 40 (SV40) Tag, erbB2/HER2/neu, Wnt-1, IRS-1 and -2, AIB1/SRC-3, etc.) transgenic mice and tumor suppressor genes (BRCA1, BRCA2, p53, etc.) knockout mice. We discuss the current status of the breast cancer prevention studies, with particular emphasis on chemoprevention using selective estrogen receptor modulators (SERMs), progesterone antagonists, aromatase inhibitors, retinoids/rexinoids, peroxisome proliferator-activated receptor (PPAR) γ ligands, vitamin D receptor ligands, cyclooxygenase-2 (COX-2) inhibitors, tyrosine kinase inhibitors, and anti-erbB2 antibodies. We anticipate that the animal models for breast cancer research provide new tools for understanding the molecular mechanisms of mammary tumorigenesis. By utilizing these animal models more effective chemopreventive drugs and intervention strategies are developed for the prevention of human breast cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Shen C et al (2008) The untapped potential of genetically engineered mouse models in chemoprevention research: opportunities and challenges. Cancer Prev Res (Phila) 1(3):161–166

    Google Scholar 

  • Abbas S, Chang-Claude J, Linseisen J (2009) Plasma 25-hydroxyvitamin D and premenopausal breast cancer risk in a German case–control study. Int J Cancer 124(1):250–255

    PubMed  CAS  Google Scholar 

  • Allred DC et al (1994) The p53 tumor-suppressor gene in human breast cancer. Cancer Treat Res 71:63–77

    PubMed  CAS  Google Scholar 

  • Andres AC et al (1987) Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc Natl Acad Sci USA 84(5):1299–1303

    PubMed  CAS  Google Scholar 

  • Andrulis IL et al (1998) neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol 16(4):1340–1349

    PubMed  CAS  Google Scholar 

  • Anzano MA et al (1994) Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res 54(17):4614–4617

    PubMed  CAS  Google Scholar 

  • Ariazi EA et al (2006) Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem 6(3):181–202

    PubMed  CAS  Google Scholar 

  • Arun B, Goss P (2004) The role of COX-2 inhibition in breast cancer treatment and prevention. Semin Oncol 31(2 Suppl 7):22–29

    PubMed  CAS  Google Scholar 

  • Avivar A et al (2006) Moderate overexpression of AIB1 triggers pre-neoplastic changes in mammary epithelium. FEBS Lett 580(22):5222–5226

    PubMed  CAS  Google Scholar 

  • Bakker GH et al (1987) Comparison of the actions of the antiprogestin mifepristone (RU486), the progestin megestrol acetate, the LHRH analog buserelin, and ovariectomy in treatment of rat mammary tumors. Cancer Treat Rep 71(11):1021–1027

    PubMed  CAS  Google Scholar 

  • Bakker GH et al (1989) Endocrine and antitumor effects of combined treatment with an antiprogestin and antiestrogen or luteinizing hormone-releasing hormone agonist in female rats bearing mammary tumors. Endocrinology 125(3):1593–1598

    PubMed  CAS  Google Scholar 

  • Bakker GH et al (1990) Treatment of breast cancer with different antiprogestins: preclinical and clinical studies. J Steroid Biochem Mol Biol 37(6):789–794

    PubMed  CAS  Google Scholar 

  • Baranova A (2008) PPAR ligands as potential modifiers of breast carcinoma outcomes. PPAR Res 2008:230893

    PubMed  Google Scholar 

  • Barnes NL et al (2007) Cyclooxygenase-2 inhibition: effects on tumour growth, cell cycling and lymphangiogenesis in a xenograft model of breast cancer. Br J Cancer 96(4):575–582

    PubMed  CAS  Google Scholar 

  • Basu GD et al (2004) Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res 2(11):632–642

    PubMed  CAS  Google Scholar 

  • Baum M et al (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359(9324):2131–2139

    PubMed  CAS  Google Scholar 

  • Baum M et al (2003) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer 98(9):1802–1810

    PubMed  CAS  Google Scholar 

  • Benagiano G, Bastianelli C, Farris M (2008a) Selective progesterone receptor modulators 3: use in oncology, endocrinology and psychiatry. Expert Opin Pharmacother 9(14):2487–2496

    PubMed  CAS  Google Scholar 

  • Benagiano G, Bastianelli C, Farris M (2008b) Selective progesterone receptor modulators 2: use in reproductive medicine. Expert Opin Pharmacother 9(14):2473–2485

    PubMed  CAS  Google Scholar 

  • Benagiano G, Bastianelli C, Farris M (2008c) Selective progesterone receptor modulators 1: use during pregnancy. Expert Opin Pharmacother 9(14):2459–2472

    PubMed  CAS  Google Scholar 

  • Bennett LM et al (2000) BRCA2-null embryonic survival is prolonged on the BALB/c genetic background. Mol Carcinog 28(3):174–183

    PubMed  CAS  Google Scholar 

  • Bergman L et al (2000) Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. Comprehensive Cancer Centres’ ALERT Group. Assessment of Liver and Endometrial cancer Risk following Tamoxifen. Lancet 356(9233):881–887

    PubMed  CAS  Google Scholar 

  • Bertone-Johnson ER (2009) Vitamin D and breast cancer. Ann Epidemiol 19(7):462–467

    PubMed  Google Scholar 

  • Bertone-Johnson ER et al (2005) Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 14(8):1991–1997

    PubMed  CAS  Google Scholar 

  • Black LJ et al (1994) Raloxifene (LY139481 HCI) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 93(1):63–69

    PubMed  CAS  Google Scholar 

  • Bonneterre J et al (2000) Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. J Clin Oncol 18(22):3748–3757

    PubMed  CAS  Google Scholar 

  • Bortman P et al (2002) Antiproliferative effects of 1,25-dihydroxyvitamin D3 on breast cells: a mini review. Braz J Med Biol Res 35(1):1–9

    PubMed  CAS  Google Scholar 

  • Bosetti C, Gallus S, La Vecchia C (2006) Aspirin and cancer risk: an updated quantitative review to 2005. Cancer Causes Control 17(7):871–888

    PubMed  Google Scholar 

  • Bosetti C, Gallus S, La Vecchia C (2009) Aspirin and cancer risk: a summary review to 2007. Recent Results Cancer Res 181:231–251

    PubMed  CAS  Google Scholar 

  • Bouchard L et al (1989) Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57(6):931–936

    PubMed  CAS  Google Scholar 

  • Brodie AM et al (1977) The effect of an aromatase inhibitor, 4-hydroxy-4-androstene-3,17-dione, on estrogen-dependent processes in reproduction and breast cancer. Endocrinology 100(6):1684–1695

    PubMed  CAS  Google Scholar 

  • Brown PH, Lippman SM (2000) Chemoprevention of breast cancer. Breast Cancer Res Treat 62(1):1–17

    PubMed  CAS  Google Scholar 

  • Brown P et al (2007) Prevention of breast cancer using rexinoids: results of a phase II biomarker modulation trial using bexarotene in women at high risk of breast cancer. Breast Cancer Res Treat 106(Suppl):181, #4046

    Google Scholar 

  • Brown PH et al (2008) Combination chemoprevention of HER2/neu-induced breast cancer using a cyclooxygenase-2 inhibitor and a retinoid X receptor-selective retinoid. Cancer Prev Res (Phila) 1(3):208–214

    CAS  Google Scholar 

  • Brueggemeier RW, Hackett JC, Diaz-Cruz ES (2005) Aromatase inhibitors in the treatment of breast cancer. Endocr Rev 26(3):331–345

    PubMed  CAS  Google Scholar 

  • Bui TD et al (1997) A novel human Wnt gene, WNT10B, maps to 12q13 and is expressed in human breast carcinomas. Oncogene 14(10):1249–1253

    PubMed  CAS  Google Scholar 

  • Campos SM (2004) Aromatase inhibitors for breast cancer in postmenopausal women. Oncologist 9(2):126–136

    PubMed  CAS  Google Scholar 

  • Cauley JA et al (2001) Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat 65(2):125–134

    PubMed  CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10(9):940–954

    PubMed  CAS  Google Scholar 

  • Chan BT, Lee AV (2008) Insulin receptor substrates (IRSs) and breast tumorigenesis. J Mammary Gland Biol Neoplasia 13(4):415–422

    PubMed  Google Scholar 

  • Chappuis PO, Nethercot V, Foulkes WD (2000) Clinico-pathological characteristics of BRCA1- and BRCA2-related breast cancer. Semin Surg Oncol 18(4):287–295

    PubMed  CAS  Google Scholar 

  • Chen WS et al (1987) Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor. Nature 328(6133):820–823

    PubMed  CAS  Google Scholar 

  • Chlebowski RT et al (1999) American Society of Clinical Oncology technology assessment on breast cancer risk reduction strategies: tamoxifen and raloxifene. J Clin Oncol 17(6):1939–1955

    PubMed  CAS  Google Scholar 

  • Chlebowski RT et al (2008) Calcium plus vitamin D supplementation and the risk of breast cancer. J Natl Cancer Inst 100(22):1581–1591

    PubMed  CAS  Google Scholar 

  • Chouvet C et al (1986) 1,25-Dihydroxyvitamin D3 inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20). J Steroid Biochem 24(1):373–376

    PubMed  CAS  Google Scholar 

  • Chow LW, Loo WT, Toi M (2005) Current directions for COX-2 inhibition in breast cancer. Biomed Pharmacother 59(Suppl 2):S281–S284

    PubMed  CAS  Google Scholar 

  • Cocconi G (1994) First generation aromatase inhibitors–aminoglutethimide and testololactone. Breast Cancer Res Treat 30(1):57–80

    PubMed  CAS  Google Scholar 

  • Colston KW (2008) Vitamin D and breast cancer risk. Best Pract Res Clin Endocrinol Metab 22(4):587–599

    PubMed  CAS  Google Scholar 

  • Connor F et al (1997) Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 17(4):423–430

    PubMed  CAS  Google Scholar 

  • Crowe DL, Chandraratna RA (2004) A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res 6(5):R546–R555

    PubMed  CAS  Google Scholar 

  • Cummings SR et al (1999) The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple outcomes of raloxifene evaluation. JAMA 281(23):2189–2197

    PubMed  CAS  Google Scholar 

  • Cuzick J (2003) Aromatase inhibitors in prevention – data from the ATAC (arimidex, tamoxifen alone or in combination) trial and the design of IBIS-II (the second International Breast Cancer Intervention Study). Recent Results Cancer Res 163:96–103;discussion 264–266

    PubMed  CAS  Google Scholar 

  • Cuzick J (2005) Aromatase inhibitors for breast cancer prevention. J Clin Oncol 23(8): 1636–1643

    PubMed  CAS  Google Scholar 

  • Cuzick J (2008a) Chemoprevention of breast cancer. Breast Cancer 15(1):10–16

    PubMed  Google Scholar 

  • Cuzick J (2008b) IBIS II: a breast cancer prevention trial in postmenopausal women using the aromatase inhibitor anastrozole. Expert Rev Anticancer Ther 8(9):1377–1385

    PubMed  CAS  Google Scholar 

  • Cuzick J et al (2002) First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 360(9336):817–824

    PubMed  CAS  Google Scholar 

  • Cuzick J et al (2007) Long-term results of tamoxifen prophylaxis for breast cancer–96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 99(4):272–282

    PubMed  CAS  Google Scholar 

  • Cuzick J et al (2009) Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 10(5):501–507

    PubMed  CAS  Google Scholar 

  • Dale TC et al (1996) Compartment switching of WNT-2 expression in human breast tumors. Cancer Res 56(19):4320–4323

    PubMed  CAS  Google Scholar 

  • D’Ambrosio C et al (1995) Transforming potential of the insulin receptor substrate 1. Cell Growth Differ 6(5):557–562

    PubMed  Google Scholar 

  • Dearth RK et al (2006) Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 26(24):9302–9314

    PubMed  CAS  Google Scholar 

  • Dearth RK et al (2007) Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle 6(6):705–713

    PubMed  CAS  Google Scholar 

  • Deng CX (2002) Tumor formation in Brca1 conditional mutant mice. Environ Mol Mutagen 39(2–3):171–177

    PubMed  CAS  Google Scholar 

  • Dillman RO (1999) Perceptions of herceptin: a monoclonal antibody for the treatment of breast cancer. Cancer Biother Radiopharm 14(1):5–10

    PubMed  CAS  Google Scholar 

  • DiPierri D (1994) RU 486, mifepristone: a review of a controversial drug. Nurse Pract 19(6):59–61

    PubMed  CAS  Google Scholar 

  • Donehower LA et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221

    PubMed  CAS  Google Scholar 

  • Du Z, Li Y (2007) RCAS-TVA in the mammary gland: an in vivo oncogene screen and a high fidelity model for breast transformation? Cell Cycle 6(7):823–826

    PubMed  CAS  Google Scholar 

  • Du Z et al (2006) Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci USA 103(46):17396–17401

    PubMed  CAS  Google Scholar 

  • Dunn BK, Ryan A (2009) Phase 3 trials of aromatase inhibitors for breast cancer prevention: following in the path of the selective estrogen receptor modulators. Ann N Y Acad Sci 1155:141–161

    PubMed  CAS  Google Scholar 

  • Dunning WF, Curtis MR, Segaloff A (1948) Strain differences in response to diethylstilbestrol and the induction of mammary gland, adrenal and bladder cancer in the rat. J Mich State Med Soc 47(3):305

    PubMed  CAS  Google Scholar 

  • Dyson N et al (1989) The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58(2):249–255

    PubMed  CAS  Google Scholar 

  • Eccles SA (2001) The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia 6(4):393–406

    PubMed  CAS  Google Scholar 

  • El Etreby MF, Liang Y (1998) Effect of antiprogestins and tamoxifen on growth inhibition of MCF-7 human breast cancer cells in nude mice. Breast Cancer Res Treat 49(2):109–117

    PubMed  Google Scholar 

  • Elledge RM, Allred DC (1994) The p53 tumor suppressor gene in breast cancer. Breast Cancer Res Treat 32(1):39–47

    PubMed  CAS  Google Scholar 

  • Elstner E et al (1998) Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci USA 95(15):8806–8811

    PubMed  CAS  Google Scholar 

  • Esserman LJ et al (1999) Vaccination with the extracellular domain of p185neu prevents mammary tumor development in neu transgenic mice. Cancer Immunol Immunother 47(6):337–342

    PubMed  CAS  Google Scholar 

  • Fabian CJ, Kimler BF (2005) Selective estrogen-receptor modulators for primary prevention of breast cancer. J Clin Oncol 23(8):1644–1655

    PubMed  CAS  Google Scholar 

  • Fabian CJ et al (2004) Breast cancer chemoprevention phase I evaluation of biomarker modulation by arzoxifene, a third generation selective estrogen receptor modulator. Clin Cancer Res 10(16):5403–5417

    PubMed  CAS  Google Scholar 

  • Fackenthal JD, Olopade OI (2007) Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer 7(12):937–948

    PubMed  CAS  Google Scholar 

  • Fereshteh MP et al (2008) The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res 68(10):3697–3706

    PubMed  CAS  Google Scholar 

  • Fisher B et al (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388

    PubMed  CAS  Google Scholar 

  • Freedman DM et al (2007) Prospective study of serum vitamin D and cancer mortality in the United States. J Natl Cancer Inst 99(21):1594–1602

    PubMed  CAS  Google Scholar 

  • Gearing KL et al (1993) Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci USA 90(4):1440–1444

    PubMed  CAS  Google Scholar 

  • Gennari L (2005) Lasofoxifene (Pfizer). Curr Opin Investig Drugs 6(10):1067–1078

    PubMed  CAS  Google Scholar 

  • Gibson SL, Ma Z, Shaw LM (2007) Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle 6(6):631–637

    PubMed  CAS  Google Scholar 

  • Gnanapragasam VJ et al (2001) Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer 85(12):1928–1936

    PubMed  CAS  Google Scholar 

  • Goss PE et al (2007) National Cancer Institute of Canada Clinical Trials Group MAP.3 Trial: evaluation of exemestane to prevent breast cancer in postmenopausal women. Clin Breast Cancer 7(11):895–900

    PubMed  CAS  Google Scholar 

  • Gottardis MM, Jordan VC (1987) Antitumor actions of keoxifene and tamoxifen in the N-nitrosomethylurea-induced rat mammary carcinoma model. Cancer Res 47(15):4020–4024

    PubMed  CAS  Google Scholar 

  • Gowen LC et al (1996) Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 12(2):191–194

    PubMed  CAS  Google Scholar 

  • Graham JD et al (1996) Progesterone receptor A and B protein expression in human breast cancer. J Steroid Biochem Mol Biol 56(1–6 Spec No):93–98

    PubMed  CAS  Google Scholar 

  • Green JE et al (2000) The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19(8):1020–1027

    PubMed  CAS  Google Scholar 

  • Grushko TA et al (2004) MYC is amplified in BRCA1-associated breast cancers. Clin Cancer Res 10(2):499–507

    PubMed  CAS  Google Scholar 

  • Gulliford T et al (1998) A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br J Cancer 78(1):6–13

    PubMed  CAS  Google Scholar 

  • Gusterson BA, Williams JC (1981) N-nitrosomethylurea-induced rat mammary tumours as models of human breast cancer. J R Soc Med 74(1):56–59

    PubMed  CAS  Google Scholar 

  • Guy CT et al (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89(22):10578–10582

    PubMed  CAS  Google Scholar 

  • Hakem R et al (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85(7):1009–1023

    PubMed  CAS  Google Scholar 

  • Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21(18):2258–2270

    PubMed  CAS  Google Scholar 

  • Harris RE et al (2000) Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 60(8):2101–2103

    PubMed  CAS  Google Scholar 

  • Hohenstein P et al (2001) A targeted mouse Brca1 mutation removing the last BRCT repeat results in apoptosis and embryonic lethality at the headfold stage. Oncogene 20(20):2544–2550

    PubMed  CAS  Google Scholar 

  • Hortobagyi GN (2001) Overview of treatment results with trastuzumab (Herceptin) in metastatic breast cancer. Semin Oncol 28(6 Suppl 18):43–47

    PubMed  CAS  Google Scholar 

  • Howe LR (2007) Rexinoids and breast cancer prevention. Clin Cancer Res 13(20):5983–5987

    PubMed  CAS  Google Scholar 

  • Howe LR, Brown AM (2004) Wnt signaling and breast cancer. Cancer Biol Ther 3(1):36–41

    PubMed  CAS  Google Scholar 

  • Howe LR et al (2002) Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res 62(19):5405–5407

    PubMed  CAS  Google Scholar 

  • Howe LR et al (2005) HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 65(21):10113–10119

    PubMed  CAS  Google Scholar 

  • Howell A et al (2005) Results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365(9453):60–62

    PubMed  CAS  Google Scholar 

  • Huang AL et al (1981) Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell 27(2 Pt 1):245–255

    PubMed  CAS  Google Scholar 

  • Huggins C, Grand LC, Brillantes FP (1961) Mammary cancer induced by a single feeding of polymucular hydrocarbons, and its suppression. Nature 189:204–207

    PubMed  CAS  Google Scholar 

  • Huggins CB, Ueda N, Wiessler M (1981) N-Nitroso-N-methylurea elicits mammary cancer in resistant and sensitive rat strains. Proc Natl Acad Sci USA 78(2):1185–1188

    PubMed  CAS  Google Scholar 

  • Huguet EL et al (1994) Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res 54(10):2615–2621

    PubMed  CAS  Google Scholar 

  • Hynes NE, Stern DF (1994) The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1198(2–3):165–184

    PubMed  Google Scholar 

  • Ingraham BA, Bragdon B, Nohe A (2008) Molecular basis of the potential of vitamin D to prevent cancer. Curr Med Res Opin 24(1):139–149

    PubMed  CAS  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    PubMed  CAS  Google Scholar 

  • Issemann I et al (1993) The retinoid X receptor enhances the function of the peroxisome proliferator activated receptor. Biochimie 75(3–4):251–256

    PubMed  CAS  Google Scholar 

  • Jang TJ et al (2002) Chemopreventive effect of celecoxib and expression of cyclooxygenase-1 and cyclooxygenase-2 on chemically-induced rat mammary tumours. Int J Exp Pathol 83(4):173–182

    PubMed  CAS  Google Scholar 

  • Janmaat ML, Giaccone G (2003) Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 8(6):576–586

    PubMed  CAS  Google Scholar 

  • Jemal A et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    PubMed  Google Scholar 

  • Jerry DJ et al (2000) A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19(8):1052–1058

    PubMed  CAS  Google Scholar 

  • Jonkers J et al (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29(4):418–425

    PubMed  CAS  Google Scholar 

  • Jordan VC (2007) Chemoprevention of breast cancer with selective oestrogen-receptor modulators. Nat Rev Cancer 7(1):46–53

    PubMed  CAS  Google Scholar 

  • Jordan VC, Allen KE (1980) Evaluation of the antitumour activity of the non-steroidal antioestrogen monohydroxytamoxifen in the DMBA-induced rat mammary carcinoma model. Eur J Cancer 16(2):239–251

    PubMed  CAS  Google Scholar 

  • Jordan VC, Morrow M (1999) Tamoxifen, raloxifene, and the prevention of breast cancer. Endocr Rev 20(3):253–278

    PubMed  CAS  Google Scholar 

  • Jordan VC, Lababidi MK, Langan-Fahey S (1991) Suppression of mouse mammary tumorigenesis by long-term tamoxifen therapy. J Natl Cancer Inst 83(7):492–496

    PubMed  CAS  Google Scholar 

  • Kirma N et al (2001) Overexpression of aromatase leads to hyperplasia and changes in the expression of genes involved in apoptosis, cell cycle, growth, and tumor suppressor functions in the mammary glands of transgenic mice. Cancer Res 61(5):1910–1918

    PubMed  CAS  Google Scholar 

  • Klijn JG, Setyono-Han B, Foekens JA (2000) Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer. Steroids 65(10–11):825–830

    PubMed  CAS  Google Scholar 

  • Koeffler HP (2003) Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res 9(1):1–9

    PubMed  CAS  Google Scholar 

  • Kuhn R et al (1995) Inducible gene targeting in mice. Science 269(5229):1427–1429

    PubMed  CAS  Google Scholar 

  • LaCroix AZ et al (2009) Effects of 5 years of treatment with lasofoxifene on incidence of breast cancer in older women. Cancer Res 69(Suppl 2):11

    Google Scholar 

  • Lala DS et al (1996) Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature 383(6599):450–453

    PubMed  CAS  Google Scholar 

  • Lange CA (2008) Challenges to defining a role for progesterone in breast cancer. Steroids 73(9–10):914–921

    PubMed  CAS  Google Scholar 

  • Lanza-Jacoby S et al (2003) The cyclooxygenase-2 inhibitor, celecoxib, prevents the development of mammary tumors in Her-2/neu mice. Cancer Epidemiol Biomarkers Prev 12(12):1486–1491

    PubMed  CAS  Google Scholar 

  • Lee WH, Boyer TG (2001) BRCA1 and BRCA2 in breast cancer. Lancet 358(Suppl):S5

    PubMed  Google Scholar 

  • Lee HJ et al (2008) Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity. Cancer Prev Res (Phila) 1(6):476–484

    CAS  Google Scholar 

  • Lehmann JM et al (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270(22):12953–12956

    PubMed  CAS  Google Scholar 

  • Li Y, Brown PH (2007) Translational approaches for the prevention of estrogen receptor-negative breast cancer. Eur J Cancer Prev 16(3):203–215

    PubMed  CAS  Google Scholar 

  • Li Y, Brown PH (2009) Prevention of ER-negative breast cancer. Recent Results Cancer Res 181:121–134

    PubMed  CAS  Google Scholar 

  • Li B et al (1998) A transgenic mouse model for mammary carcinogenesis. Oncogene 16(8):997–1007

    PubMed  CAS  Google Scholar 

  • Li Y, Hively WP, Varmus HE (2000) Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 19(8):1002–1009

    PubMed  CAS  Google Scholar 

  • Li SA et al (2002) Prevention of solely estrogen-induced mammary tumors in female aci rats by tamoxifen: evidence for estrogen receptor mediation. J Endocrinol 175(2):297–305

    PubMed  CAS  Google Scholar 

  • Li Y et al (2007) The Rexinoid LG100268 prevents the development of preinvasive and invasive estrogen receptor negative tumors in MMTV-erbB2 mice. Clin Cancer Res 13(20):6224–6231

    PubMed  CAS  Google Scholar 

  • Li Y et al (2008) The rexinoid, bexarotene, prevents the development of premalignant lesions in MMTV-erbB2 mice. Br J Cancer 98(8):1380–1388

    PubMed  CAS  Google Scholar 

  • Liang Y et al (2007) Progestin-dependent progression of human breast tumor xenografts: a novel model for evaluating antitumor therapeutics. Cancer Res 67(20):9929–9936

    PubMed  CAS  Google Scholar 

  • Liby K et al (2006) The combination of the rexinoid, LG100268, and a selective estrogen receptor modulator, either arzoxifene or acolbifene, synergizes in the prevention and treatment of mammary tumors in an estrogen receptor-negative model of breast cancer. Clin Cancer Res 12(19): 5902–5909

    PubMed  CAS  Google Scholar 

  • Liby K et al (2007) A new rexinoid, NRX194204, prevents carcinogenesis in both the lung and mammary gland. Clin Cancer Res 13(20):6237–6243

    PubMed  CAS  Google Scholar 

  • Liby K et al (2008) Prevention and treatment of experimental estrogen receptor-negative mammary carcinogenesis by the synthetic triterpenoid CDDO-methyl Ester and the rexinoid LG100268. Clin Cancer Res 14(14):4556–4563

    PubMed  CAS  Google Scholar 

  • Lin SC et al (2004) Somatic mutation of p53 leads to estrogen receptor alpha-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 64(10):3525–3532

    PubMed  CAS  Google Scholar 

  • Lippman SM, Lotan R (2000) Advances in the development of retinoids as chemopreventive agents. J Nutr 130(2S Suppl):479S–482S

    PubMed  CAS  Google Scholar 

  • Lippman ME et al (2006) Effect of raloxifene on the incidence of invasive breast cancer in postmenopausal women with osteoporosis categorized by breast cancer risk. Clin Cancer Res 12(17):5242–5247

    PubMed  CAS  Google Scholar 

  • List HJ et al (2001) Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res Treat 68(1):21–28

    PubMed  CAS  Google Scholar 

  • Liu CY et al (1996) Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 10(14):1835–1843

    PubMed  CAS  Google Scholar 

  • Liu CH et al (2001) Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 276(21):18563–18569

    PubMed  CAS  Google Scholar 

  • Lohrisch C, Piccart M (2001) An overview of HER2. Semin Oncol 28(6 Suppl 18):3–11

    PubMed  CAS  Google Scholar 

  • Lollini PL et al (2006) Vaccines for tumour prevention. Nat Rev Cancer 6(3):204–216

    PubMed  CAS  Google Scholar 

  • Lowe LC et al (2005) Plasma 25-hydroxy vitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population. Eur J Cancer 41(8):1164–1169

    PubMed  CAS  Google Scholar 

  • Lu S et al (2002) Cyclooxygenase-2 inhibitor celecoxib inhibits promotion of mammary tumorigenesis in rats fed a high fat diet rich in n-6 polyunsaturated fatty acids. Cancer Lett 184(1):7–12

    PubMed  CAS  Google Scholar 

  • Lu C et al (2003) Effect of epidermal growth factor receptor inhibitor on development of estrogen receptor-negative mammary tumors. J Natl Cancer Inst 95(24):1825–1833

    PubMed  CAS  Google Scholar 

  • Lubet RA et al (1994) Chemopreventive effects of the aromatase inhibitors vorozole (R-83842) and 4-hydroxyandrostenedione in the methylnitrosourea (MNU)-induced mammary tumor model in Sprague-Dawley rats. Carcinogenesis 15(12):2775–2780

    PubMed  CAS  Google Scholar 

  • Lubet RA et al (1998) Chemopreventive effects of the aromatase inhibitor vorozole (R 83842) in the methylnitrosourea-induced mammary cancer model. Carcinogenesis 19(8):1345–1351

    PubMed  CAS  Google Scholar 

  • Ludwig T et al (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11(10):1226–1241

    PubMed  CAS  Google Scholar 

  • Ludwig T et al (2001) Tumorigenesis in mice carrying a truncating Brca1 mutation. Genes Dev 15(10):1188–1193

    PubMed  CAS  Google Scholar 

  • Luthra R et al (2003) Use of letrozole as a chemopreventive agent in aromatase overexpressing transgenic mice. J Steroid Biochem Mol Biol 86(3–5):461–467

    PubMed  CAS  Google Scholar 

  • Macedo LF et al (2008) Combination of anastrozole with fulvestrant in the intratumoral aromatase xenograft model. Cancer Res 68(9):3516–3522

    PubMed  CAS  Google Scholar 

  • Malaney S, Daly RJ (2001) The ras signaling pathway in mammary tumorigenesis and metastasis. J Mammary Gland Biol Neoplasia 6(1):101–113

    PubMed  CAS  Google Scholar 

  • Maroulakou IG et al (1994) Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci USA 91(23): 11236–11240

    PubMed  CAS  Google Scholar 

  • Masamura S et al (1995) Aromatase inhibitor development for treatment of breast cancer. Breast Cancer Res Treat 33(1):19–26

    PubMed  CAS  Google Scholar 

  • Matsumoto H et al (1999) Antitumor effect of 22-oxacalcitriol on estrogen receptor-negative MDA-MB-231 tumors in athymic mice. Oncol Rep 6(2):349–352

    PubMed  CAS  Google Scholar 

  • Mayr U et al (2008) RCAS-mediated retroviral gene delivery: a versatile tool for the study of gene function in a mouse model of pancreatic cancer. Hum Gene Ther 19(9):896–906

    PubMed  CAS  Google Scholar 

  • McCormick DL et al (1981) Lifetime dose-response relationships for mammary tumor induction by a single administration of N-methyl-N-nitrosourea. Cancer Res 41(5):1690–1694

    PubMed  CAS  Google Scholar 

  • McCormick DL et al (1982) Enhanced inhibition of mammary carcinogenesis by combined treatment with N-(4-hydroxyphenyl)retinamide and ovariectomy. Cancer Res 42(2):508–512

    PubMed  CAS  Google Scholar 

  • McCullough ML, Bostick RM, Mayo TL (2009) Vitamin d gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annu Rev Nutr 29:111–132

    PubMed  CAS  Google Scholar 

  • Medina D et al (2002) Environmental carcinogens and p53 tumor-suppressor gene interactions in a transgenic mouse model for mammary carcinogenesis. Environ Mol Mutagen 39(2–3):178–183

    PubMed  CAS  Google Scholar 

  • Medina D et al (2009) Prevention of tumorigenesis in p53-null mammary epithelium by rexinoid bexarotene, tyrosine kinase inhibitor gefitinib, and celecoxib. Cancer Prev Res (Phila) 2(2):168–174

    CAS  Google Scholar 

  • Mehta RG et al (1997) Prevention of preneoplastic mammary lesion development by a novel vitamin D analogue, 1alpha-hydroxyvitamin D5. J Natl Cancer Inst 89(3):212–218

    PubMed  CAS  Google Scholar 

  • Mehta RG et al (2000a) A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. J Natl Cancer Inst 92(5):418–423

    PubMed  CAS  Google Scholar 

  • Mehta RR et al (2000b) Differentiation of human breast carcinoma cells by a novel vitamin D analog: 1alpha-hydroxyvitamin D5. Int J Oncol 16(1):65–73

    PubMed  CAS  Google Scholar 

  • Mehta RG et al (2003) Chemoprevention of mammary carcinogenesis by 1alpha-hydroxyvitamin D5, a synthetic analog of Vitamin D. Mutat Res 523–524:253–264

    PubMed  Google Scholar 

  • Menard S et al (2004) Role of HER2/neu in tumor progression and therapy. Cell Mol Life Sci 61(23):2965–2978

    PubMed  CAS  Google Scholar 

  • Michna H et al (1989a) Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: mechanistic studies. Breast Cancer Res Treat 14(3):275–288

    PubMed  CAS  Google Scholar 

  • Michna H et al (1989b) The antitumor mechanism of progesterone antagonists is a receptor mediated antiproliferative effect by induction of terminal cell death. J Steroid Biochem 34(1–6):447–453

    PubMed  CAS  Google Scholar 

  • Mietz JA et al (1992) The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J 11(13):5013–5020

    PubMed  CAS  Google Scholar 

  • Miller VA et al (1996) Initial clinical trial of the retinoid receptor pan agonist 9-cis retinoic acid. Clin Cancer Res 2(3):471–475

    PubMed  CAS  Google Scholar 

  • Moens U et al (1997) Mechanisms of transcriptional regulation of cellular genes by SV40 large T- and small T-antigens. Virus Genes 15(2):135–154

    PubMed  CAS  Google Scholar 

  • Moulder SL et al (2001) Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 61(24):8887–8895

    PubMed  CAS  Google Scholar 

  • Moy B, Goss PE (2006) Lapatinib: current status and future directions in breast cancer. Oncologist 11(10):1047–1057

    PubMed  CAS  Google Scholar 

  • Muller WJ et al (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54(1):105–115

    PubMed  CAS  Google Scholar 

  • Nabholtz JM et al (2000) Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J Clin Oncol 18(22):3758–3767

    PubMed  CAS  Google Scholar 

  • Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4(9):665–676

    PubMed  CAS  Google Scholar 

  • Nelson MH, Dolder CR (2006) Lapatinib: a novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann Pharmacother 40(2):261–269

    PubMed  CAS  Google Scholar 

  • Nielsen LL et al (1991) Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Res 51(14):3762–3767

    PubMed  CAS  Google Scholar 

  • Nielsen LL, Gurnani M, Tyler RD (1992) Evaluation of the wap-ras transgenic mouse as a model system for testing anticancer drugs. Cancer Res 52(13):3733–3738

    PubMed  CAS  Google Scholar 

  • Nielsen LL et al (1995) In wap-ras transgenic mice, tumor phenotype but not cyclophosphamide-sensitivity is affected by genetic background. Anticancer Res 15(2):385–392

    PubMed  CAS  Google Scholar 

  • Noonberg SB, Benz CC (2000) Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily: role as anticancer agents. Drugs 59(4):753–767

    PubMed  CAS  Google Scholar 

  • Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    PubMed  CAS  Google Scholar 

  • Nusse R et al (1984) Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307(5947):131–136

    PubMed  CAS  Google Scholar 

  • Olayioye MA et al (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167

    PubMed  CAS  Google Scholar 

  • O’Regan RM et al (2002) Effects of raloxifene after tamoxifen on breast and endometrial tumor growth in athymic mice. J Natl Cancer Inst 94(4):274–283

    PubMed  Google Scholar 

  • Palmer CN et al (1994) Interaction of the peroxisome proliferator-activated receptor alpha with the retinoid X receptor alpha unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-1-binding site in the CYP4A6 promoter. J Biol Chem 269(27):18083–18089

    PubMed  CAS  Google Scholar 

  • Paterson JW (1998) BRCA1: a review of structure and putative functions. Dis Markers 13(4): 261–274

    PubMed  CAS  Google Scholar 

  • Pegram MD, Konecny G, Slamon DJ (2000) The molecular and cellular biology of HER2/neu gene amplification/overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res 103:57–75

    PubMed  CAS  Google Scholar 

  • Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2(10):764–776

    PubMed  CAS  Google Scholar 

  • Phillips KA (2000) Immunophenotypic and pathologic differences between BRCA1 and BRCA2 hereditary breast cancers. J Clin Oncol 18(21 Suppl):107S–112S

    PubMed  CAS  Google Scholar 

  • Piccart M et al (2001) The predictive value of HER2 in breast cancer. Oncology 61(Suppl 2):73–82

    PubMed  CAS  Google Scholar 

  • Poole AJ et al (2006) Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314(5804):1467–1470

    PubMed  CAS  Google Scholar 

  • Ravdin PM, Chamness GC (1995) The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers–a review. Gene 159(1):19–27

    PubMed  CAS  Google Scholar 

  • Rendi MH et al (2004) The selective estrogen receptor modulator arzoxifene and the rexinoid LG100268 cooperate to promote transforming growth factor beta-dependent apoptosis in breast cancer. Cancer Res 64(10):3566–3571

    PubMed  CAS  Google Scholar 

  • Richardson H et al (2007) The National Cancer Institute of Canada Clinical Trials Group MAP.3 trial: an international breast cancer prevention trial. Curr Oncol 14(3):89–96

    PubMed  CAS  Google Scholar 

  • Ristimaki A et al (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62(3):632–635

    PubMed  CAS  Google Scholar 

  • Rogers AE, Lee SY (1986) Chemically-induced mammary gland tumors in rats: modulation by dietary fat. Prog Clin Biol Res 222:255–282

    PubMed  CAS  Google Scholar 

  • Rohan TE et al (2009) A randomized controlled trial of calcium plus vitamin D supplementation and risk of benign proliferative breast disease. Breast Cancer Res Treat 116(2):339–350

    PubMed  CAS  Google Scholar 

  • Rohatgi N, Blau R, Lower EE (2002) Raloxifene is associated with less side effects than tamoxifen in women with early breast cancer: a questionnaire study from one physician’s practice. J Womens Health Gend Based Med 11(3):291–301

    PubMed  Google Scholar 

  • Rose-Hellekant TA, Sandgren EP (2000) Transforming growth factor alpha- and c-myc-induced mammary carcinogenesis in transgenic mice. Oncogene 19(8):1092–1096

    PubMed  CAS  Google Scholar 

  • Rossouw JE et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333

    PubMed  CAS  Google Scholar 

  • Rothschild TC et al (1987) Transplacental effects of diethylstilbestrol on mammary development and tumorigenesis in female ACI rats. Cancer Res 47(16):4508–4516

    PubMed  CAS  Google Scholar 

  • Roy J et al (2003) A novel pure SERM achieves complete regression of the majority of human breast cancer tumors in nude mice. Breast Cancer Res Treat 81(3):223–229

    PubMed  CAS  Google Scholar 

  • Ruhlen RL et al (2009) Tamoxifen induces regression of estradiol-induced mammary cancer in the ACI.COP-Ept2 rat model. Breast Cancer Res Treat 117(3):517–524

    PubMed  CAS  Google Scholar 

  • Rusnak DW et al (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1(2):85–94

    PubMed  CAS  Google Scholar 

  • Russo J, Russo IH (1996) Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 39(1):7–20

    PubMed  CAS  Google Scholar 

  • Ryo A et al (2001) Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 3(9):793–801

    PubMed  CAS  Google Scholar 

  • Salazar LG, Disis ML (2005) Cancer vaccines: the role of tumor burden in tipping the scale toward vaccine efficacy. J Clin Oncol 23(30):7397–7398

    PubMed  Google Scholar 

  • Sandgren EP et al (1995) Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 55(17):3915–3927

    PubMed  CAS  Google Scholar 

  • Santen RJ et al (1999) The potential of aromatase inhibitors in breast cancer prevention. Endocr Relat Cancer 6(2):235–243

    PubMed  CAS  Google Scholar 

  • Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392

    PubMed  CAS  Google Scholar 

  • Schneider MR et al (1990) Antitumor activity and mechanism of action of different antiprogestins in experimental breast cancer models. J Steroid Biochem Mol Biol 37(6):783–787

    PubMed  CAS  Google Scholar 

  • Schoenenberger CA et al (1988) Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J 7(1):169–175

    PubMed  CAS  Google Scholar 

  • Serghides L, Kain KC (2005) Peroxisome proliferator-activated receptor gamma and retinoid X receptor agonists have minimal effects on the interaction of endothelial cells with Plasmodium falciparum-infected erythrocytes. Infect Immun 73(2):1209–1213

    PubMed  CAS  Google Scholar 

  • Sharan SK et al (1997) Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386(6627):804–810

    PubMed  CAS  Google Scholar 

  • Shellabarger CJ et al (1980) Interaction of dimethylbenzanthracene and diethylstilbestrol on mammary adenocarcinoma formation in female ACI rats. Cancer Res 40(6):1808–1811

    PubMed  CAS  Google Scholar 

  • Shen Q, Brown PH (2003) Novel agents for the prevention of breast cancer: targeting transcription factors and signal transduction pathways. J Mammary Gland Biol Neoplasia 8(1):45–73

    PubMed  Google Scholar 

  • Shen Q, Brown PH (2005) Transgenic mouse models for the prevention of breast cancer. Mutat Res 576(1–2):93–110

    PubMed  CAS  Google Scholar 

  • Shen SX et al (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17(24):3115–3124

    PubMed  CAS  Google Scholar 

  • Shibata MA et al (1996) Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations. Cancer Res 56(21):4894–4903

    PubMed  CAS  Google Scholar 

  • Shin MH et al (2002) Intake of dairy products, calcium, and vitamin d and risk of breast cancer. J Natl Cancer Inst 94(17):1301–1311

    PubMed  CAS  Google Scholar 

  • Shull JD et al (1997) Ovary-intact, but not ovariectomized female ACI rats treated with 17beta-estradiol rapidly develop mammary carcinoma. Carcinogenesis 18(8):1595–1601

    PubMed  CAS  Google Scholar 

  • Sinn E et al (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49(4):465–475

    PubMed  CAS  Google Scholar 

  • Slamon DJ et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    PubMed  CAS  Google Scholar 

  • Spitz IM (2006) Progesterone receptor antagonists. Curr Opin Investig Drugs 7(10):882–890

    PubMed  CAS  Google Scholar 

  • Sporn MB (1976) Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res 36(7 Pt 2):2699–2702

    PubMed  CAS  Google Scholar 

  • Sporn MB (2004) Arzoxifene: a promising new selective estrogen receptor modulator for clinical chemoprevention of breast cancer. Clin Cancer Res 10(16):5313–5315

    PubMed  CAS  Google Scholar 

  • Sporn MB et al (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35(6):1332–1338

    PubMed  CAS  Google Scholar 

  • Stewart TA, Pattengale PK, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38(3):627–637

    PubMed  CAS  Google Scholar 

  • Strecker TE et al (2009) Effect of lapatinib on the development of estrogen receptor-negative mammary tumors in mice. J Natl Cancer Inst 101(2):107–113

    PubMed  CAS  Google Scholar 

  • Suh N et al (1999) A new ligand for the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), GW7845, inhibits rat mammary carcinogenesis. Cancer Res 59(22):5671–5673

    PubMed  CAS  Google Scholar 

  • Suh N et al (2001) Arzoxifene, a new selective estrogen receptor modulator for chemoprevention of experimental breast cancer. Cancer Res 61(23):8412–8415

    PubMed  CAS  Google Scholar 

  • Suh N et al (2002) Prevention and treatment of experimental breast cancer with the combination of a new selective estrogen receptor modulator, arzoxifene, and a new rexinoid, LG 100268. Clin Cancer Res 8(10):3270–3275

    PubMed  CAS  Google Scholar 

  • Suzuki A et al (1997) Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11(10):1242–1252

    PubMed  CAS  Google Scholar 

  • Tekmal RR et al (1996) Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res 56(14):3180–3185

    PubMed  CAS  Google Scholar 

  • Torres-Arzayus MI et al (2004) High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6(3):263–274

    PubMed  CAS  Google Scholar 

  • Tsukamoto AS et al (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55(4):619–625

    PubMed  CAS  Google Scholar 

  • Turashvili G et al (2006) Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73(5):213–223

    PubMed  CAS  Google Scholar 

  • Ugolini F et al (2001) WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20(41):5810–5817

    PubMed  CAS  Google Scholar 

  • Uray IP, Brown PH (2006) Prevention of breast cancer: current state of the science and future opportunities. Expert Opin Investig Drugs 15(12):1583–1600

    PubMed  CAS  Google Scholar 

  • Verlinden L et al (2000) Two novel 14-Epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo. Cancer Res 60(10):2673–2679

    PubMed  CAS  Google Scholar 

  • Vogel VG (2009) The NSABP Study of Tamoxifen and Raloxifene (STAR) trial. Expert Rev Anticancer Ther 9(1):51–60

    PubMed  CAS  Google Scholar 

  • Vogel VG et al (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295(23):2727–2741

    PubMed  CAS  Google Scholar 

  • Wagner KU et al (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25(21):4323–4330

    PubMed  CAS  Google Scholar 

  • Wakeling AE et al (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62(20):5749–5754

    PubMed  CAS  Google Scholar 

  • Weaver Z et al (2002) Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21(33):5097–5107

    PubMed  CAS  Google Scholar 

  • Welsch CW (1985) Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res 45(8):3415–3443

    PubMed  CAS  Google Scholar 

  • Welsch CW et al (1981) Effect of an estrogen antagonist (tamoxifen) on the initiation and progression of gamma-irradiation-induced mammary tumors in female Sprague-Dawley rats. Eur J Cancer Clin Oncol 17(12):1255–1258

    PubMed  CAS  Google Scholar 

  • Welsh J (2007) Vitamin D and prevention of breast cancer. Acta Pharmacol Sin 28(9):1373–1382

    PubMed  CAS  Google Scholar 

  • Wickerham DL et al (2009) The use of tamoxifen and raloxifene for the prevention of breast cancer. Recent Results Cancer Res 181:113–119

    PubMed  CAS  Google Scholar 

  • Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482

    PubMed  CAS  Google Scholar 

  • William WN Jr et al (2009) Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 8(3):213–225

    PubMed  CAS  Google Scholar 

  • Woodburn JR (1999) The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther 82(2–3):241–250

    PubMed  CAS  Google Scholar 

  • Wu K et al (2000) 9-cis-Retinoic acid suppresses mammary tumorigenesis in C3(1)-simian virus 40T antigen-transgenic mice. Clin Cancer Res 6(9):3696–3704

    PubMed  CAS  Google Scholar 

  • Wu K et al (2002a) Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol Biomarkers Prev 11(5):467–474

    PubMed  CAS  Google Scholar 

  • Wu K et al (2002b) The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res 62(22):6376–6380

    PubMed  CAS  Google Scholar 

  • Xia W et al (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21(41):6255–6263

    PubMed  CAS  Google Scholar 

  • Xie SP, Pirianov G, Colston KW (1999) Vitamin D analogues suppress IGF-I signalling and promote apoptosis in breast cancer cells. Eur J Cancer 35(12):1717–1723

    PubMed  CAS  Google Scholar 

  • Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17(9):1681–1692

    PubMed  CAS  Google Scholar 

  • Xu X et al (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22(1):37–43

    PubMed  CAS  Google Scholar 

  • Yang LM et al (1999) Role of retinoid receptors in the prevention and treatment of breast cancer. J Mammary Gland Biol Neoplasia 4(4):377–388

    PubMed  CAS  Google Scholar 

  • Yarden Y (2001) Biology of HER2 and its importance in breast cancer. Oncology 61(Suppl 2):1–13

    PubMed  CAS  Google Scholar 

  • Yin Y et al (2005) Peroxisome proliferator-activated receptor delta and gamma agonists differentially alter tumor differentiation and progression during mammary carcinogenesis. Cancer Res 65(9):3950–3957

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Powel H. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, C., Brown, P.H. (2012). Animal Models for Breast Cancer Prevention Research. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_24

Download citation

Publish with us

Policies and ethics