Skip to main content

The Development and Use of Genetically Tractable Preclinical Mouse Models

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research

Abstract

Mouse models have made fundamental contributions to our understanding of tumor progression and the basic molecular genetics of cancer. However, these models have only recently been adapted to effectively study the biology of therapeutic response. The emerging use of preclinical mouse models to study cancer therapy has required the development of tractable genetic systems to rapidly generate tumors bearing complex genetic lesions, as well as an improved understanding of how to most appropriately model human cancer treatment in the mouse. In this chapter, I discuss recent approaches to developing preclinical systems that can be used to effectively model human cancer therapy. A particular focus of this discussion is the emerging set of genetic tools that can be used to accurately recapitulate relevant therapeutic settings. Many of these tools have only been developed in the past several years and speak to the enormous potential of mouse models to fundamentally improve current drug development platforms and inform the further development of personalized cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Shen C et al (2003) Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res 63:3886–3890

    PubMed  CAS  Google Scholar 

  • Adams JM et al (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–538

    Article  PubMed  CAS  Google Scholar 

  • Beckmann N et al (2007) In vivo mouse imaging and spectroscopy in drug discovery. NMR Biomed 20:154–185

    Article  PubMed  Google Scholar 

  • Bergers G, Hanahan D (2002) Combining antiangiogenic agents with metronomic chemotherapy enhances efficacy against late-stage pancreatic islet carcinomas in mice. Cold Spring Harb Symp Quant Biol 67:293–300

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  PubMed  CAS  Google Scholar 

  • Bergers G et al (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812

    Article  PubMed  CAS  Google Scholar 

  • Bergers G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  PubMed  CAS  Google Scholar 

  • Besterman JM (1996) Topoisomerase I inhibition by the camptothecin analog Gl147211C. From the laboratory to the clinic. Ann N Y Acad Sci 803:202–209

    Article  PubMed  CAS  Google Scholar 

  • Boehm T et al (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    Article  PubMed  CAS  Google Scholar 

  • Bouchard L et al (1989) Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936

    Article  PubMed  CAS  Google Scholar 

  • Boxer RB et al (2004) Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6:577–586

    Article  PubMed  CAS  Google Scholar 

  • Burgess DJ et al (2008) Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc Natl Acad Sci USA 105:9053–9058

    Article  PubMed  Google Scholar 

  • Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  • Cherney BW et al (1997) Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt’s lymphoma cells. Cancer Res 57:2508–2515

    PubMed  CAS  Google Scholar 

  • Chin L et al (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400:468–472

    Article  PubMed  CAS  Google Scholar 

  • Collier LS et al (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276

    Article  PubMed  CAS  Google Scholar 

  • Cook N et al (2008) K-Ras-driven pancreatic cancer mouse model for anticancer inhibitor analyses. Methods Enzymol 439:73–85

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt K, White E (2006) A mouse model system to genetically dissect the molecular mechanisms regulating tumorigenesis. Clin Cancer Res 12:5298–5304

    Article  PubMed  CAS  Google Scholar 

  • Dickins RA et al (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37:1289–1295

    PubMed  CAS  Google Scholar 

  • Ding L et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Dupuy AJ et al (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226

    Article  PubMed  CAS  Google Scholar 

  • Edwards SL et al (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115

    Article  PubMed  CAS  Google Scholar 

  • Foster BA et al (1997) Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 57:3325–3330

    PubMed  CAS  Google Scholar 

  • Gibbs JB, Oliff A (1997) The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol 37:143–166

    Article  PubMed  CAS  Google Scholar 

  • Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92(8):3439–3443

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–122

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21:2258–2270

    Article  PubMed  CAS  Google Scholar 

  • He LZ et al (2001) Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 108:1321–1330

    PubMed  CAS  Google Scholar 

  • Hemann MT et al (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 33:396–400

    Article  PubMed  CAS  Google Scholar 

  • Hemann MT et al (2004) Suppression of tumorigenesis by the p53 target PUMA. Proc Natl Acad Sci USA 101:9333–9338

    Article  PubMed  CAS  Google Scholar 

  • Hingorani SR et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  PubMed  CAS  Google Scholar 

  • Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 95:1218–1223

    Article  PubMed  CAS  Google Scholar 

  • Holland EC et al (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    Article  PubMed  CAS  Google Scholar 

  • Hu X et al (2005) mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 7:356–368

    Article  PubMed  CAS  Google Scholar 

  • Jackson EL et al (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    Article  PubMed  CAS  Google Scholar 

  • Jain M et al (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104

    Article  PubMed  CAS  Google Scholar 

  • Jia S et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779

    PubMed  CAS  Google Scholar 

  • Johnson JI et al (2001a) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  PubMed  CAS  Google Scholar 

  • Johnson L et al (2001b) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Smith JA Jr (2004) Genetically modified mice and their use in developing therapeutic strategies for prostate cancer. J Urol 172:12–19

    Article  PubMed  CAS  Google Scholar 

  • Kinkade CW et al (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118:3051–3064

    PubMed  CAS  Google Scholar 

  • Klein RD (2005) The use of genetically engineered mouse models of prostate cancer for nutrition and cancer chemoprevention research. Mutat Res 576:111–119

    Article  PubMed  CAS  Google Scholar 

  • Klumb CE et al (2003) DNA sequence profile of TP53 gene mutations in childhood B-cell non-Hodgkin’s lymphomas: prognostic implications. Eur J Haematol 71:81–90

    Article  PubMed  CAS  Google Scholar 

  • Kulke MH et al (2002) A phase II study of troglitazone, an activator of the PPARgamma receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J 8:395–399

    Article  PubMed  Google Scholar 

  • Macdonald JS et al (2005) A phase II study of farnesyltransferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest New Drugs 23:485–487

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M et al (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504

    Article  PubMed  CAS  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Olive KP, Tuveson DA (2006) The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 12:5277–5287

    Article  PubMed  CAS  Google Scholar 

  • Pao W et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311

    Article  PubMed  CAS  Google Scholar 

  • Pear WS et al (1998) Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92:3780–3792

    PubMed  CAS  Google Scholar 

  • Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109:321–334

    Article  PubMed  CAS  Google Scholar 

  • Politi K et al (2006) Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 20:1496–1510

    Article  PubMed  CAS  Google Scholar 

  • Sarraf P et al (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CA, Lowe SW (2001) Bcl-2 mediates chemoresistance in matched pairs of primary E(mu)-myc lymphomas in vivo. Blood Cells Mol Dis 27:206–216

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CA, Rosenthal CT, Lowe SW (2000) Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6:1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CA et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  PubMed  CAS  Google Scholar 

  • Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754

    Article  PubMed  CAS  Google Scholar 

  • Tan TT et al (2005) Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7:227–238

    Article  PubMed  CAS  Google Scholar 

  • Traxler P et al (2001) Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 21:499–512

    Article  PubMed  CAS  Google Scholar 

  • Twombly R (2002) First clinical trials of endostatin yield lukewarm results. J Natl Cancer Inst 94:1520–1521

    PubMed  Google Scholar 

  • van Lohuizen M, Breuer M, Berns A (1989) N-myc is frequently activated by proviral insertion in MuLV-induced T cell lymphomas. EMBO J 8:133–136

    PubMed  Google Scholar 

  • van Lohuizen M et al (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752

    Article  PubMed  Google Scholar 

  • Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7:659–672

    Article  PubMed  CAS  Google Scholar 

  • Ventura A et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    Article  PubMed  CAS  Google Scholar 

  • Wendel HG et al (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337

    Article  PubMed  CAS  Google Scholar 

  • Wendel HG et al (2006) Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci USA 103:7444–7449

    Article  PubMed  CAS  Google Scholar 

  • Williams RT, Roussel MF, Sherr CJ (2006) Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci USA 103:6688–6693

    Article  PubMed  CAS  Google Scholar 

  • Xue W et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

  • Yang FC et al (2008) Nf1-dependent tumors require a microenvironment containing Nf1+/−− and c-kit-dependent bone marrow. Cell 135:437–448

    Article  PubMed  CAS  Google Scholar 

  • Zender L et al (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125:1253–1267

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Hemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hemann, M.T. (2012). The Development and Use of Genetically Tractable Preclinical Mouse Models. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_23

Download citation

Publish with us

Policies and ethics