The Use of Cre–loxP Technology and Inducible Systems to Generate Mouse Models of Cancer



Genetically engineered mice carrying targeted modification of tumor suppressor genes or oncogenes have greatly advanced our understanding of their roles in cancer initiation, progression, and metastasis. However, alterations of these genes often result in lethality at stages prior to tumor formation. This obstacle has been effectively overcome by the use of the Cre–loxP technology in conjunction with inducible systems to generate genetic switches for precise DNA recombination. The ability to silence or activate genes of interest in a spatial and temporal manner makes it straightforward for studying their functions both in vitro and in vivo. This review summarizes the technical aspects of designing and generating mice carrying conditional loss or gain of function mutations, and strategies for tissue-specific Cre–loxP-mediated recombination. Applications of several major inducible systems in cancer research are also discussed.


Mutant Mouse Inducible System loxP Site Conditional Knockout Smad4 Gene 



I thank Dr. John T. Lahusen for the critical reading of the manuscript. This research was supported by the Intramural Research Program of the National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, USA.


  1. Alberg AJ, Helzlsouer KJ (1997) Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol 9:505–511PubMedCrossRefGoogle Scholar
  2. Alberg AJ, Lam AP, Helzlsouer KJ (1999) Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol 11:435–441PubMedCrossRefGoogle Scholar
  3. Argos P, Landy A, Abremski K, Egan JB, Haggard-Ljungquist E, Hoess RH, Kahn ML, Kalionis B, Narayana SV, Pierson LS 3rd et al (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440PubMedGoogle Scholar
  4. Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA (2006) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20:3130–3146PubMedCrossRefGoogle Scholar
  5. Berton TR, Wang XJ, Zhou Z, Kellendonk C, Schutz G, Tsai S, Roop DR (2000) Characterization of an inducible, epidermal-specific knockout system: differential expression of lacZ in different Cre reporter mouse strains. Genesis 26:160–161PubMedCrossRefGoogle Scholar
  6. Beutler E (2007) Iron storage disease: facts, fiction and progress. Blood Cells Mol Dis 39:140–147PubMedCrossRefGoogle Scholar
  7. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689PubMedGoogle Scholar
  8. Brodie SG, Xu X, Qiao W, Li WM, Cao L, Deng CX (2001) Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20:7514–7523PubMedCrossRefGoogle Scholar
  9. Capecchi MR (1989) Altering the genome by homologous recombination [Review]. Science 244:1288–1292PubMedCrossRefGoogle Scholar
  10. Chang HS, Lin CH, Chen YC, Yu WC (2004) Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdown. Am J Pathol 165:1535–1541PubMedCrossRefGoogle Scholar
  11. Chen L, Adar R, Yang X, Monsonego EO, Li C, Hauschka PV, Yayon A, Deng CX (1999) Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 104:1517–1525PubMedCrossRefGoogle Scholar
  12. Clarke AR (2005) Studying the consequences of immediate loss of gene function in the intestine: APC. Biochem Soc Trans 33:665–666PubMedCrossRefGoogle Scholar
  13. Coumoul X, Deng CX (2003) Roles of FGF receptors in mammalian development and congenital diseases. Birth Defects Res C Embryo Today 69:286–304PubMedCrossRefGoogle Scholar
  14. Coumoul X, Deng CX (2006) RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie 88(6):637–643PubMedCrossRefGoogle Scholar
  15. Coumoul X, Shukla V, Li C, Wang RH, Deng CX (2005) Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 33:e102PubMedCrossRefGoogle Scholar
  16. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326PubMedCrossRefGoogle Scholar
  17. Deng CX (2002a) Roles of BRCA1 in centrosome duplication. Oncogene 21:6222–6227PubMedCrossRefGoogle Scholar
  18. Deng CX (2002b) Tumor formation in Brca1 conditional mutant mice. Environ Mol Mutagen 39:171–177PubMedCrossRefGoogle Scholar
  19. Deng CX (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response, and cancer evolution. Nucleic Acids Res 34:1416–1426PubMedCrossRefGoogle Scholar
  20. Deng C (2007) In celebration of Dr Mario R. Capecchi’s Nobel Prize. Int J Biol Sci 3:417–419PubMedGoogle Scholar
  21. Deng CX, Wang RH (2003) Roles of BRCA1 in DNA damage repair: a link between development and cancer. Hum Mol Genet 12:R113–R123PubMedCrossRefGoogle Scholar
  22. Deng CX, Xu X (2004) Generation and analysis of Brca1 conditional knockout mice. Methods Mol Biol 280:185–200PubMedGoogle Scholar
  23. Deng C, Thomas KR, Capecchi MR (1993) Location of crossovers during gene targeting with insertion and replacement vectors. Mol Cell Biol 13:2134–2140PubMedGoogle Scholar
  24. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129PubMedCrossRefGoogle Scholar
  25. Dietrich P, Dragatsis I, Xuan S, Zeitlin S, Efstratiadis A (2000) Conditional mutagenesis in mice with heat shock promoter-driven cre transgenes. Mamm Genome 11:196–205PubMedCrossRefGoogle Scholar
  26. Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56:265–271PubMedGoogle Scholar
  27. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Zelada-Hedman M et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62:676–689PubMedCrossRefGoogle Scholar
  28. Friedberg EC, Meira LB (2006) Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage Version 7. DNA Repair (Amst) 5:189–209CrossRefGoogle Scholar
  29. Friedl W, Kruse R, Uhlhaas S, Stolte M, Schartmann B, Keller KM, Jungck M, Stern M, Loff S, Back W, Propping P, Jenne DE (1999) Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes Cancer 25:403–406PubMedCrossRefGoogle Scholar
  30. Furuta S, Wang JM, Wei S, Jeng YM, Jiang X, Gu B, Chen PL, Lee EY, Lee WH (2006) Removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter leads to accelerated mammary tumor growth contributed by prominent vasculature. Cancer Cell 10:13–24PubMedCrossRefGoogle Scholar
  31. Gitler AD, Kong Y, Choi JK, Zhu Y, Pear WS, Epstein JA (2004) Tie2-Cre-induced inactivation of a conditional mutant Nf1 allele in mouse results in a myeloproliferative disorder that models juvenile myelomonocytic leukemia. Pediatr Res 55:581–584PubMedCrossRefGoogle Scholar
  32. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509PubMedCrossRefGoogle Scholar
  33. Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH (1996) Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 12:191–194PubMedCrossRefGoogle Scholar
  34. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189PubMedCrossRefGoogle Scholar
  35. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting [see comments]. Science 265:103–106PubMedCrossRefGoogle Scholar
  36. Hahn SA, Hoque AT, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, Seymour AB, Weinstein CL, Yeo CJ, Hruban RH, Kern SE (1996a) Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 56:490–494PubMedGoogle Scholar
  37. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996b) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1 [see comments]. Science 271:350–353PubMedCrossRefGoogle Scholar
  38. Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, Firpo E, Hui CC, Roberts J, Rossant J, Mak TW (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85:1009–1023PubMedCrossRefGoogle Scholar
  39. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689PubMedCrossRefGoogle Scholar
  40. Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–318PubMedCrossRefGoogle Scholar
  41. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471PubMedCrossRefGoogle Scholar
  42. Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19:333–339PubMedCrossRefGoogle Scholar
  43. Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P, Tomlinson IP, Houlston RS, Bevan S, Mitros FA, Stone EM, Aaltonen LA (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis [see comments]. Science 280:1086–1088PubMedCrossRefGoogle Scholar
  44. Huh WK, Gomez-Navarro J, Arafat WO, Xiang J, Mahasreshti PJ, Alvarez RD, Barnes MN, Curiel DT (2001) Bax-induced apoptosis as a novel gene therapy approach for carcinoma of the cervix. Gynecol Oncol 83:370–377PubMedCrossRefGoogle Scholar
  45. Huncharek M, Muscat J, Geschwind JF (1999) K-ras oncogene mutation as a prognostic marker in non-small cell lung cancer: a combined analysis of 881 cases. Carcinogenesis 20:1507–1510PubMedCrossRefGoogle Scholar
  46. Iiizumi S, Nomura Y, So S, Uegaki K, Aoki K, Shibahara K, Adachi N, Koyama H (2006) Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41:311–316PubMedCrossRefGoogle Scholar
  47. Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160PubMedCrossRefGoogle Scholar
  48. Imai T, Chambon P, Metzger D (2000) Inducible site-specific somatic mutagenesis in mouse hepatocytes. Genesis 26:147–148PubMedCrossRefGoogle Scholar
  49. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27:4324–4327PubMedCrossRefGoogle Scholar
  50. Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, Imaoka S, Tsujimoto M, Monden M, Matsuura N (2002) Expression of p57/Kip2 protein in extrahepatic bile duct carcinoma and intrahepatic cholangiocellular carcinoma. Liver 22:145–149PubMedCrossRefGoogle Scholar
  51. Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX (2000) A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9:1603–1613PubMedCrossRefGoogle Scholar
  52. Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, Hruban RH, Adsay NV, Tuveson DA, Hingorani SR (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11:229–243PubMedCrossRefGoogle Scholar
  53. Jager R, Maurer J, Jacob A, Schorle H (2004) Cell type-specific conditional regulation of the c-myc proto-oncogene by combining Cre/loxP recombination and tamoxifen-mediated activation. Genesis 38:145–150PubMedCrossRefGoogle Scholar
  54. Jones LP, Tilli MT, Assefnia S, Torre K, Halama ED, Parrish A, Rosen EM, Furth PA (2008) Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERalpha-negative and ERalpha-positive mammary preneoplasia and cancer. Oncogene 27:794–802PubMedCrossRefGoogle Scholar
  55. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425PubMedCrossRefGoogle Scholar
  56. Kaartinen V, Nagy A (2001) Removal of the floxed neo gene from a conditional knockout allele by the adenoviral Cre recombinase in vivo. Genesis 31:126–129PubMedCrossRefGoogle Scholar
  57. Kang YK, Kim WH, Jang JJ (2002) Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma. Hum Pathol 33:877–883PubMedCrossRefGoogle Scholar
  58. Kerr P, Ashworth A (2001) New complexities for BRCA1 and BRCA2. Curr Biol 11:R668–R676PubMedCrossRefGoogle Scholar
  59. Khosravi-Far R, Der CJ (1994) The Ras signal transduction pathway. Cancer Metastasis Rev 13:67–89PubMedCrossRefGoogle Scholar
  60. Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA (2007) Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67:8121–8130PubMedCrossRefGoogle Scholar
  61. Komatsu K, Suzuki S, Shimosegawa T, Miyazaki JI, Toyota T (2000) Cre-loxP-mediated bax gene activation reduces growth rate and increases sensitivity to chemotherapeutic agents in human gastric cancer cells. Cancer Gene Ther 7:885–892PubMedCrossRefGoogle Scholar
  62. Kuhbandner S, Brummer S, Metzger D, Chambon P, Hofmann F, Feil R (2000) Temporally controlled somatic mutagenesis in smooth muscle. Genesis 28:15–22PubMedCrossRefGoogle Scholar
  63. Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429PubMedCrossRefGoogle Scholar
  64. Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E, Alt FW, Westphal H (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci USA 93:5860–5865PubMedCrossRefGoogle Scholar
  65. Le Y, Sauer B (2000) Conditional gene knockout using cre recombinase [In Process Citation]. Methods Mol Biol 136:477–485PubMedGoogle Scholar
  66. Leong WI, Lonnerdal B (2004) Hepcidin, the recently identified peptide that appears to regulate iron absorption. J Nutr 134:1–4PubMedGoogle Scholar
  67. Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, Wagner KU, Wu DC, Lane TF, Liu X, Hennighausen L, Wu H (2002) Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129:4159–4170PubMedGoogle Scholar
  68. Li W, Qiao W, Chen L, Xu X, Yang X, Li D, Li C, Brodie SG, Meguid MM, Hennighausen L, Deng CX (2003) Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 130:6143–6153PubMedCrossRefGoogle Scholar
  69. Li W, Xiao C, Vonderhaar BK, Deng CX (2007) A role of estrogen/ERalpha signaling in BRCA1-associated tissue-specific tumor formation. Oncogene 26:7204–7212PubMedCrossRefGoogle Scholar
  70. Lindeberg J, Mattsson R, Ebendal T (2002) Timing the doxycycline yields different patterns of genomic recombination in brain neurons with a new inducible Cre transgene. J Neurosci Res 68:248–253PubMedCrossRefGoogle Scholar
  71. Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH (1996) Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 10:1835–1843PubMedCrossRefGoogle Scholar
  72. Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LF, Peterse JL, Berns A, Jonkers J (2007) Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 104:12111–12116PubMedCrossRefGoogle Scholar
  73. Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11:1226–1241PubMedCrossRefGoogle Scholar
  74. Luo F, Brooks DG, Ye H, Hamoudi R, Poulogiannis G, Patek CE, Winton DJ, Arends MJ (2007) Conditional expression of mutated K-ras accelerates intestinal tumorigenesis in Msh2-deficient mice. Oncogene 26:4415–4427PubMedCrossRefGoogle Scholar
  75. Maesawa C, Tamura G, Nishizuka S, Iwaya T, Ogasawara S, Ishida K, Sakata K, Sato N, Ikeda K, Kimura Y, Saito K, Satodate R (1997) MAD-related genes on 18q21.1, Smad2 and Smad4, are altered infrequently in esophageal squamous cell carcinoma. Jpn J Cancer Res 88:340–343PubMedCrossRefGoogle Scholar
  76. Mak TW, Hakem A, McPherson JP, Shehabeldin A, Zablocki E, Migon E, Duncan GS, Bouchard D, Wakeham A, Cheung A, Karaskova J, Sarosi I, Squire J, Marth J, Hakem R (2000) Brcal required for T cell lineage development but not TCR loci rearrangement. Nat Immunol 1:77–82PubMedCrossRefGoogle Scholar
  77. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352PubMedCrossRefGoogle Scholar
  78. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  79. Meuwissen R, Linn SC, van der Valk M, Mooi WJ, Berns A (2001) Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20:6551–6558PubMedCrossRefGoogle Scholar
  80. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141PubMedCrossRefGoogle Scholar
  81. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRefGoogle Scholar
  82. Mills NE, Fishman CL, Scholes J, Anderson SE, Rom WN, Jacobson DR (1995) Detection of K-ras oncogene mutations in bronchoalveolar lavage fluid for lung cancer diagnosis. J Natl Cancer Inst 87:1056–1060PubMedCrossRefGoogle Scholar
  83. Morgan SE, Kastan MB (1997) p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res 71:1–25PubMedCrossRefGoogle Scholar
  84. Nagatake M, Takagi Y, Osada H, Uchida K, Mitsudomi T, Saji S, Shimokata K, Takahashi T, Takahashi T (1996) Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res 56:2718–2720PubMedGoogle Scholar
  85. Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109PubMedCrossRefGoogle Scholar
  86. Nagy A, Mar L (2001) Creation and use of a Cre recombinase transgenic database. Methods Mol Biol 158:95–106PubMedGoogle Scholar
  87. Nathanson KL, Weber BL (2001) “Other” breast cancer susceptibility genes: searching for more holy grail. Hum Mol Genet 10:715–720PubMedCrossRefGoogle Scholar
  88. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355PubMedCrossRefGoogle Scholar
  89. Okuda K, Nakanuma Y, Miyazaki M (2002) Cholangiocarcinoma: recent progress. Part 2: molecular pathology and treatment. J Gastroenterol Hepatol 17:1056–1063PubMedCrossRefGoogle Scholar
  90. Olnes MJ, Erlich R (2004) A review and update on cholangiocarcinoma. Oncology 66:167–179PubMedCrossRefGoogle Scholar
  91. Paterson JW (1998) BRCA1: a review of structure and putative functions. Dis Markers 13:261–274PubMedGoogle Scholar
  92. Pietrangelo A (2006) Hereditary hemochromatosis. Annu Rev Nutr 26:251–270PubMedCrossRefGoogle Scholar
  93. Pollard JW (2001) Tumour-stromal interactions. Transforming growth factor-beta isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res 3:230–237PubMedCrossRefGoogle Scholar
  94. Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX (2006) Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 25:207–217PubMedGoogle Scholar
  95. Rodenhuis S, Slebos RJ, Boot AJ, Evers SG, Mooi WJ, Wagenaar SS, van Bodegom PC, Bos JL (1988) Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 48:5738–5741PubMedGoogle Scholar
  96. Rucker EB 3rd, Dierisseau P, Wagner KU, Garrett L, Wynshaw-Boris A, Flaws JA, Hennighausen L (2000) Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis [In Process Citation]. Mol Endocrinol 14:1038–1052PubMedCrossRefGoogle Scholar
  97. Ruiz S, Santos M, Paramio JM (2006) Is the loss of pRb essential for the mouse skin carcinogenesis? Cell Cycle 5:625–629PubMedCrossRefGoogle Scholar
  98. Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22:2954–2963PubMedCrossRefGoogle Scholar
  99. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85:5166–5170PubMedCrossRefGoogle Scholar
  100. Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA Jr, Meltzer PS, Hahn SA, Kern SE (1996) DPC4 gene in various tumor types. Cancer Res 56:2527–2530PubMedGoogle Scholar
  101. Schwenk F, Kuhn R, Angrand PO, Rajewsky K, Stewart AF (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res 26:1427–1432PubMedCrossRefGoogle Scholar
  102. Shen SX, Weaver Z, Xu X, Li C, Weinstein M, Chen L, Guan XY, Ried T, Deng CX (1998) A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17:3115–3124PubMedCrossRefGoogle Scholar
  103. Shukla V, Coumoul X, Cao L, Wang R, Xiao C, Xu X, Ando S, Yakar S, LeRoith D, Deng D (2006) Absence of the full-length BRCA1 leads to increased expression of IGF signaling axis members. Cancer Res 66:7151–7157PubMedCrossRefGoogle Scholar
  104. Shukla V, Coumoul X, Deng CX (2007a) RNAi-based conditional gene knockdown in mice using a U6 promoter driven vector. Int J Biol Sci 3:91–99PubMedCrossRefGoogle Scholar
  105. Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX (2007b) RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 39:1145–1150PubMedCrossRefGoogle Scholar
  106. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12:107–119PubMedCrossRefGoogle Scholar
  107. Sirica AE (2005) Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 41:5–15PubMedCrossRefGoogle Scholar
  108. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71PubMedCrossRefGoogle Scholar
  109. Sternberg N, Sauer B, Hoess R, Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol 187:197–212PubMedCrossRefGoogle Scholar
  110. Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, Timmerman MM, Brody LC, Tucker MA (1997) The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews [see comments]. N Engl J Med 336:1401–1408PubMedCrossRefGoogle Scholar
  111. Sugimachi K, Aishima S, Taguchi K, Tanaka S, Shimada M, Kajiyama K, Tsuneyoshi M (2001a) The role of overexpression and gene amplification of cyclin D1 in intrahepatic cholangiocarcinoma. J Hepatol 35:74–79PubMedCrossRefGoogle Scholar
  112. Sugimachi K, Taguchi K, Aishima S, Tanaka S, Shimada M, Kajiyama K, Tsuneyoshi M (2001b) Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol 14:900–905PubMedCrossRefGoogle Scholar
  113. Tannour-Louet M, Porteu A, Vaulont S, Kahn A, Vasseur-Cognet M (2002) A tamoxifen-inducible chimeric Cre recombinase specifically effective in the fetal and adult mouse liver. Hepatology 35:1072–1081PubMedCrossRefGoogle Scholar
  114. Taylor-Robinson SD, Toledano MB, Arora S, Keegan TJ, Hargreaves S, Beck A, Khan SA, Elliott P, Thomas HC (2001) Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales 1968–1998. Gut 48:816–820PubMedCrossRefGoogle Scholar
  115. Teng Y, Sun AN, Pan XC, Yang G, Yang LL, Wang MR, Yang X (2006) Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse. Cancer Res 66:6972–6981PubMedCrossRefGoogle Scholar
  116. Tsujita M, Mori H, Watanabe M, Suzuki M, Miyazaki J, Mishina M (1999) Cerebellar granule cell-specific and inducible expression of Cre recombinase in the mouse. J Neurosci 19:10318–10323PubMedGoogle Scholar
  117. Ueda S, Fukamachi K, Matsuoka Y, Takasuka N, Takeshita F, Naito A, Iigo M, Alexander DB, Moore MA, Saito I, Ochiya T, Tsuda H (2006) Ductal origin of pancreatic adenocarcinomas induced by conditional activation of a human Ha-ras oncogene in rat pancreas. Carcinogenesis 27:2497–2510PubMedCrossRefGoogle Scholar
  118. Utomo AR, Nikitin AY, Lee WH (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17:1091–1096PubMedCrossRefGoogle Scholar
  119. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 101:10380–10385PubMedCrossRefGoogle Scholar
  120. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665PubMedCrossRefGoogle Scholar
  121. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25:4323–4330PubMedCrossRefGoogle Scholar
  122. Wakefield LM, Piek E, Bottinger EP (2001) TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 6:67–82PubMedCrossRefGoogle Scholar
  123. Wang RH, Yu H, Deng CX (2004) A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci USA 101:17108–17113PubMedCrossRefGoogle Scholar
  124. Wang RH, Li C, Xu X, Zheng Y, Xiao C, Zerfas P, Cooperman S, Eckhaus M, Rouault T, Mishra L, Deng CX (2005) A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab 2:399–409PubMedCrossRefGoogle Scholar
  125. Weaver Z, Montagna C, Xu X, Howard T, Gadina M, Brodie SG, Deng CX, Ried T (2002) Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21:5097–5107PubMedCrossRefGoogle Scholar
  126. Weinstein M, Yang X, Deng C (2000) Functions of mammalian smad genes as revealed by targeted gene disruption in mice [In Process Citation]. Cytokine Growth Factor Rev 11:49–58PubMedCrossRefGoogle Scholar
  127. Wu T, Leng J, Han C, Demetris AJ (2004) The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 3:299–307PubMedGoogle Scholar
  128. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hennighausen L, Wynshaw-Boris A, Deng CX (1999a) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation [see comments]. Nat Genet 22:37–43PubMedCrossRefGoogle Scholar
  129. Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX (1999b) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395PubMedCrossRefGoogle Scholar
  130. Xu B, Kim S, Kastan MB (2001a) Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21:3445–3450PubMedCrossRefGoogle Scholar
  131. Xu X, Li C, Garrett-Beal L, Larson D, Wynshaw-Boris A, Deng CX (2001b) Direct removal in the mouse of a floxed neo gene from a three-loxP conditional knockout allele by two novel approaches. Genesis 30:1–6PubMedCrossRefGoogle Scholar
  132. Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA, Harris CC, Deng CX (2001c) Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28:266–271PubMedCrossRefGoogle Scholar
  133. Xu X, Aprelikova O, Moens P, Deng CX, Furth PA (2003) Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130:2001–2012PubMedCrossRefGoogle Scholar
  134. Xu X, Kobayashi S, Qiao W, Li C, Xiao C, Radaeva S, Stiles B, Wang R, Ohara N, Yoshino T, LeRoith D, Torbenson MS, Gores GJ, Wu H, Gao B, Deng C (2006) Induction of intrahepatic cholangiocellular carcinoma by liver specific disruption of Smad4 and Pten in mice. J Clin Invest 116(7):1843–1852PubMedCrossRefGoogle Scholar
  135. Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 96:7324–7329PubMedCrossRefGoogle Scholar
  136. Yang X, Li C, Xu X, Deng C (1998) The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 95:3667–3672PubMedCrossRefGoogle Scholar
  137. Yang X, Li C, Herrera PL, Deng CX (2002) Generation of Smad4/Dpc4 conditional knockout mice. Genesis 32:80–81PubMedCrossRefGoogle Scholar
  138. Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X (2005) Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 65:8671–8678PubMedCrossRefGoogle Scholar
  139. Zhang P, Li MZ, Elledge SJ (2002) Towards genetic genome projects: genomic library screening and gene-targeting vector construction in a single step. Nat Genet 30:31–39PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Genetics of Development and Disease BranchNational Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations