Modeling Transforming Growth Factor-ß Signaling in Cancer



The discovery of TGF-ß has impacted our understanding of human cancer. We find many events that become deregulated are associated with TGF-ß signaling. TGF-ß has been shown to be a master regulator in every human cancer type. Accordingly, antagonists of TGF-ß signaling are emerging as therapies for cancer. Mouse models revealed the now assumed role of TGF-ß as a tumor suppressor in normal tissue, as well as TGF-ß having tumor promoting or metastatic activity once tumors progress (Muraoka et al. J Clin Invest 109:1551–1559, 2002; Pierce et al. Proc Natl Acad Sci USA 92:4254–4258, 1995; Tang et al. Nat Med 4:802–807, 1998). Mouse models have not only contributed to our understanding of TGF-ß signaling, but have also identified that the diversity of TGF-ß action is only compounded further as we consider the cells of the tumor and the tumor microenvironment. This review examines the diverse role of TGF-ß in cancer as it has been revealed through transgenic mouse models. Due to the often apparently contrary roles of TGF-ß signaling in cancer initiation, progression, and metastasis, the results from the study of mouse models may suggest better ways to target therapeutics antagonizing TGF-ß signaling.


Mammary Gland Null Mouse Conditional Knockout Knockout Mouse Model Smad7 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We apologize to those whose work we could not cite. Our work is supported by grants from the NIH GM079879 (to VRP) and CA108646 (to NAB).


  1. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32PubMedCrossRefGoogle Scholar
  2. Amendt C, Schirmacher P, Weber H, Blessing M (1998) Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 17:25–34PubMedCrossRefGoogle Scholar
  3. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810PubMedCrossRefGoogle Scholar
  4. Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D et al (2006) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20:3130–3146PubMedCrossRefGoogle Scholar
  5. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S et al (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501PubMedCrossRefGoogle Scholar
  6. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350PubMedCrossRefGoogle Scholar
  7. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001a) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36PubMedGoogle Scholar
  8. Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL (2001b) Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276:46707–46713PubMedCrossRefGoogle Scholar
  9. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851PubMedCrossRefGoogle Scholar
  10. Bierie B, Moses HL (2006) TGF-beta and cancer. Cytokine Growth Factor Rev 17:29–40PubMedCrossRefGoogle Scholar
  11. Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS, Gautam S, Moses HL, Grady WM (2004) Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res 64:4687–4692PubMedCrossRefGoogle Scholar
  12. Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM (1997) Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res 57:5564–5570PubMedGoogle Scholar
  13. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068PubMedCrossRefGoogle Scholar
  14. Compton LA, Potash DA, Brown CB, Barnett JV (2007) Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Circ Res 101:784–791PubMedCrossRefGoogle Scholar
  15. Corti A, Curnis F, Arap W, and Pasqualini R. (2008). The neovasculature homing motif NGR: more than meets the eye. Blood 112:2628–2635PubMedCrossRefGoogle Scholar
  16. DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMedGoogle Scholar
  17. DasGupta R, Rhee H, Fuchs E (2002) A developmental conundrum: a stabilized form of beta-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells. J Cell Biol 158:331–344PubMedCrossRefGoogle Scholar
  18. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 19:2495–2504PubMedGoogle Scholar
  19. Fink SP, Swinler SE, Lutterbaugh JD, Massague J, Thiagalingam S, Kinzler KW, Vogelstein B, Willson JK, Markowitz S (2001) Transforming growth factor-beta-induced growth inhibition in a Smad4 mutant colon adenoma cell line. Cancer Res 61:256–260PubMedGoogle Scholar
  20. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, Muller WJ, Moses HL (2005) Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 65:2296–2302PubMedCrossRefGoogle Scholar
  21. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400PubMedCrossRefGoogle Scholar
  22. Glick AB, Lee MM, Darwiche N, Kulkarni AB, Karlsson S, Yuspa SH (1994) Targeted deletion of the TGF-beta 1 gene causes rapid progression to squamous cell carcinoma. Genes Dev 8:2429–2440PubMedCrossRefGoogle Scholar
  23. Go C, Li P, Wang XJ (1999) Blocking transforming growth factor beta signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res 59:2861–2868PubMedGoogle Scholar
  24. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122PubMedCrossRefGoogle Scholar
  25. Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL (2003) Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 163:1539–1549PubMedCrossRefGoogle Scholar
  26. Hahm KB, Im YH, Parks TW, Park SH, Markowitz S, Jung HY, Green J, Kim SJ (2001) Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut 49:190–198PubMedCrossRefGoogle Scholar
  27. Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, Kim MW, Ahn BO, Oh TY, Lee MH et al (2002) Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther 16(Suppl 2):115–127PubMedCrossRefGoogle Scholar
  28. Hayashi A, Kasahara T, Iwamoto K, Ishiwata M, Kametani M, Kakiuchi C, Furuichi T, and Kato T. (1997). The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J Biol Chem 282:34525–34534PubMedCrossRefGoogle Scholar
  29. Hayward SW (2002) Approaches to modeling stromal-epithelial interactions. J Urol 168:1165–1172PubMedCrossRefGoogle Scholar
  30. Hayward SW, Del Buono R, Deshpande N, Hall PA (1992) A functional model of adult human prostate epithelium. The role of androgens and stroma in architectural organisation and the maintenance of differentiated secretory function. J Cell Sci 102(Pt 2):361–372PubMedGoogle Scholar
  31. Hayward SW, Rosen MA, Cunha GR (1997) Stromal-epithelial interactions in the normal and neoplastic prostate. Br J Urol 79(Suppl 2):18–26PubMedGoogle Scholar
  32. He W, Li AG, Wang D, Han S, Zheng B, Goumans MJ, Ten Dijke P, Wang XJ (2002) Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J 21:2580–2590PubMedCrossRefGoogle Scholar
  33. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nature reviews 7:246–255PubMedCrossRefGoogle Scholar
  34. Honjo Y, Bian Y, Kawakami K, Molinolo A, Longenecker G, Boppana R, Larsson J, Karlsson S, Gutkind JS, Puri RK et al (2007) TGF-beta receptor I conditional knockout mice develop spontaneous squamous cell carcinoma. Cell Cycle 6:1360–1366PubMedCrossRefGoogle Scholar
  35. Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160PubMedCrossRefGoogle Scholar
  36. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11:415–421PubMedCrossRefGoogle Scholar
  37. Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS, Dodd JG, Duckworth ML, Matusik RJ (1998) Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 78:1–15Google Scholar
  38. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6:1365–1375PubMedCrossRefGoogle Scholar
  39. Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M et al (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019PubMedCrossRefGoogle Scholar
  40. Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA (2007) Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67:8121–8130PubMedCrossRefGoogle Scholar
  41. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90:770–774PubMedCrossRefGoogle Scholar
  42. Kulkarni AB, Thyagarajan T, Letterio JJ (2002) Function of cytokines within the TGF-beta superfamily as determined from transgenic and gene knockout studies in mice. Curr Mol Med 2:303–327PubMedCrossRefGoogle Scholar
  43. Lehner T (2008) Special regulatory T cell review: the resurgence of the concept of contrasuppression in immunoregulation. Immunology 123:40–44PubMedCrossRefGoogle Scholar
  44. Leveen P, Larsson J, Ehinger M, Cilio CM, Sundler M, Sjostrand LJ, Holmdahl R, Karlsson S (2002) Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 100:560–568PubMedCrossRefGoogle Scholar
  45. Li X, Placencio VR, Iturregui JM, Uwamariya C, Sharif-Afshar AR, Koyama T, Hayward SW, Bhowmick NA (2008) Prostate tumor progression is mediated by a paracrine TGF-ß/Wnt3a signaling axis. Oncogene 27:7118–7130PubMedCrossRefGoogle Scholar
  46. Liu Y, Festing MH, Hester M, Thompson JC, Weinstein M (2004) Generation of novel conditional and hypomorphic alleles of the Smad2 gene. Genesis 40:118–123PubMedCrossRefGoogle Scholar
  47. Lucas PJ, McNeil N, Hilgenfeld E, Choudhury B, Kim SJ, Eckhaus MA, Ried T, Gress RE (2004) Transforming growth factor-beta pathway serves as a primary tumor suppressor in CD8+ T cell tumorigenesis. Cancer Res 64:6524–6529PubMedCrossRefGoogle Scholar
  48. Macpherson IR, Hooper S, Serrels A, McGarry L, Ozanne BW, Harrington K, Frame MC, Sahai E, Brunton VG (2007) p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism. Oncogene 26:5214–5228PubMedCrossRefGoogle Scholar
  49. Maggard M, Meng L, Ke B, Allen R, Devgan L, Imagawa DK (2001) Antisense TGF-beta2 immunotherapy for hepatocellular carcinoma: treatment in a rat tumor model. Ann Surg Oncol 8:32–37PubMedGoogle Scholar
  50. Marzo AL, Fitzpatrick DR, Robinson BW, Scott B (1997) Antisense oligonucleotides specific for transforming growth factor beta2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res 57:3200–3207PubMedGoogle Scholar
  51. Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820PubMedCrossRefGoogle Scholar
  52. Munoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A, Sozmen EG, Madison BB, Pozzi A, Moon RT et al (2006) Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res 66:9837–9844PubMedCrossRefGoogle Scholar
  53. Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ et al (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559PubMedGoogle Scholar
  54. Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE, Moses HL, Arteaga CL (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 23:8691–8703PubMedCrossRefGoogle Scholar
  55. Muraoka-Cook RS, Dumont N, Arteaga CL (2005) Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11:937s–943sPubMedGoogle Scholar
  56. Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, Tong A, Kumar P, Pappen B, Hamilton C et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24:4721–4730PubMedCrossRefGoogle Scholar
  57. Oft M, Heider KH, Beug H (1998) TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243–1252PubMedCrossRefGoogle Scholar
  58. Oshima H, Oshima M, Kobayashi M, Tsutsumi M, Taketo MM (1997) Morphological and molecular processes of polyp formation in Apc(delta716) knockout mice. Cancer Res 57:1644–1649PubMedGoogle Scholar
  59. Pierce DF Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ Jr, Moses HL (1995) Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA 92:4254–4258PubMedCrossRefGoogle Scholar
  60. Placencio VR, Sharif-Afshar AR, Li X, Huang H, Uwamariya C, Neilson EG, Shen MM, Hayward SW, Matusik RJ, Bhowmick NA (2008) Stromal TGF-ß signaling mediates prostatic androgen response by paracrine Wnt activity. Cancer Res 68:4709–4718PubMedCrossRefGoogle Scholar
  61. Postovit LM, Seftor EA, Seftor RE, Hendrix MJ (2006) Influence of the microenvironment on melanoma cell fate determination and phenotype. Cancer Res 66:7833–7836PubMedCrossRefGoogle Scholar
  62. Postovit LM, Costa FF, Bischof JM, Seftor EA, Wen B, Seftor RE, Feinberg AP, Soares MB, Hendrix MJ (2007) The commonality of plasticity underlying multipotent tumor cells and embryonic stem cells. J Cell Biochem 101:908–917PubMedCrossRefGoogle Scholar
  63. Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX (2006) Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 25:207–217PubMedGoogle Scholar
  64. Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S (1997) Frequency of Smad gene mutations in human cancers. Cancer Res 57:2578–2580PubMedGoogle Scholar
  65. Sahai E, Garcia-Medina R, Pouyssegur J, Vial E (2007) Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 176:35–42PubMedCrossRefGoogle Scholar
  66. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670PubMedGoogle Scholar
  67. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699PubMedCrossRefGoogle Scholar
  68. Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D, Small C, Weinberg RA, Sizeland AM, Zhu HJ (2003) Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos. Mol Cell Biol 23:4371–4385PubMedCrossRefGoogle Scholar
  69. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C, Gould KA, Dove WF (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670PubMedCrossRefGoogle Scholar
  70. Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, and Taketo MM. (1999). Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 59:6113–6117PubMedCrossRefGoogle Scholar
  71. Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, Letterio JJ, Wakefield LM (1998) Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4:802–807PubMedCrossRefGoogle Scholar
  72. Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJ (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12:925–932PubMedCrossRefGoogle Scholar
  73. Tu WH, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, Shyr Y, Kasper S, Case T, Roberts RL, Shappell SB et al (2003) The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 5:267–277PubMedGoogle Scholar
  74. Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR (2001) Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 28:165–168PubMedCrossRefGoogle Scholar
  75. Wolfraim LA, Fernandez TM, Mamura M, Fuller WL, Kumar R, Cole DE, Byfield S, Felici A, Flanders KC, Walz TM et al (2004a) Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 351:552–559PubMedCrossRefGoogle Scholar
  76. Wolfraim LA, Walz TM, James Z, Fernandez T, Letterio JJ (2004b) p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness. J Immunol 173:3093–3102PubMedGoogle Scholar
  77. Wong KK, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA (2003). Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421:643–648PubMedCrossRefGoogle Scholar
  78. Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, Zhou YX, Weinstein M, Kim SJ, Deng CX (2000) Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19:1868–1874PubMedCrossRefGoogle Scholar
  79. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, Zhang YE (2005) Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121:101–113PubMedCrossRefGoogle Scholar
  80. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18:1280–1291PubMedCrossRefGoogle Scholar
  81. Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615PubMedGoogle Scholar
  82. Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG (2007). Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27:4488–4499PubMedCrossRefGoogle Scholar
  83. Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departments of Cancer Biology, Urologic Surgery, Vanderbilt-Ingram Cancer CenterVanderbilt UniversityNashvilleUSA
  2. 2.Department of Medicine, Uro-Oncology Research ProgramCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations