Advertisement

Roles of p53 and pRB Tumor Suppressor Networks in Human Cancer: Insight from Studies in the Engineered Mouse

  • Julien Sage
  • Laura Attardi
  • Terry Van Dyke
Chapter

Abstract

The retinoblastoma (RB) and p53 tumor suppressor genes were identified more than 20 years ago and have since been implicated in multiple cellular processes, including the control of cell cycle progression, cell death, and cellular differentiation. A number of recent reviews explain in detail how RB and p53 normally prevent the development of cancer (Burkhart and Sage 2008; van den Heuvel and Dyson 2008; Sherr 2004; Vousden and Lu 2002; Levine et al. 2006). Our goal here is not to provide an exhaustive description of how these two factors function in mammalian cells, but rather to summarize some key aspects of their biology and to discuss areas in the field that are thought-provoking. In particular, we focus on how mouse models associated with perturbed of RB and p53 function have influenced our vision of the mechanisms of tumorigenesis.

Keywords

Human Retinoblastoma Genetically Engineer Mouse Familial Retinoblastoma Pituitary Cancer Retinoblastoma Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

GEM

Genetically engineered mice

GOF

Gain-of-function

LOF

Loss-of-function

MEFs

Mouse embryo fibroblasts

RB

Retinoblastoma

SCLC

Small cell lung carcinoma

References

  1. Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S et al (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131(2):378–390PubMedCrossRefGoogle Scholar
  2. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L et al (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406(6796):641–645PubMedCrossRefGoogle Scholar
  3. Attardi LD, Jacks T (1999) The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci 55(1):48–63PubMedCrossRefGoogle Scholar
  4. Bourdon JC (2007) p53 Family isoforms. Curr Pharm Biotechnol 8(6):332–336PubMedCrossRefGoogle Scholar
  5. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8(9):671–682PubMedCrossRefGoogle Scholar
  6. Burkhart DL, Viatour P, Ho VM, Sage J (2008) GFP reporter mice for the retinoblastoma-related cell cycle regulator p107. Cell Cycle 7(16):2544–2552PubMedCrossRefGoogle Scholar
  7. Cavenee WK, Hansen MF, Nordenskjold M, Kock E, Maumenee I, Squire JA et al (1985) Genetic origin of mutations predisposing to retinoblastoma. Science 228(4698):501–503PubMedCrossRefGoogle Scholar
  8. Chen J, Tobin GJ, Pipas JM, Van Dyke T (1992) T-antigen mutant activities in vivo: roles of p53 and pRB binding in tumorigenesis of the choroid plexus. Oncogene 7(6):1167–1175PubMedGoogle Scholar
  9. Chen D, Livne-Bar I, Vanderluit JL, Slack RS, Agochiya M, Bremner R (2004) Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5(6):539–551PubMedCrossRefGoogle Scholar
  10. Christophorou MA, Martin-Zanca D, Soucek L, Lawlor ER, Brown-Swigart L, Verschuren EW et al (2005) Temporal dissection of p53 function in vitro and in vivo. Nat Genet 37(7):718–726PubMedCrossRefGoogle Scholar
  11. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443(7108):214–217PubMedCrossRefGoogle Scholar
  12. Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML et al (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359(6393):328–330PubMedCrossRefGoogle Scholar
  13. Classon M, Dyson N (2001) p107 and p130: versatile proteins with interesting pockets. Exp Cell Res 264(1):135–147PubMedCrossRefGoogle Scholar
  14. Claudio PP, Tonini T, Giordano A (2002) The retinoblastoma family: twins or distant cousins? Genome Biol 3(9):reviews3012PubMedCrossRefGoogle Scholar
  15. Cobrinik D (2005) Pocket proteins and cell cycle control. Oncogene 24(17):2796–2809PubMedCrossRefGoogle Scholar
  16. Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N et al (1996) Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev 10(13):1633–1644PubMedCrossRefGoogle Scholar
  17. D’Andrilli G, Masciullo V, Bagella L, Tonini T, Minimo C, Zannoni GF et al (2004) Frequent loss of pRb2/p130 in human ovarian carcinoma. Clin Cancer Res 10(9):3098–3103PubMedCrossRefGoogle Scholar
  18. Dannenberg JH, te Riele HP (2006) The retinoblastoma gene family in cell cycle regulation and suppression of tumorigenesis. Results Probl Cell Differ 42:183–225PubMedCrossRefGoogle Scholar
  19. Deshpande A, Hinds PW (2006) The retinoblastoma protein in osteoblast differentiation and osteosarcoma. Curr Mol Med 6(7):809–817PubMedGoogle Scholar
  20. Deyoung MP, Ellisen LW (2007) p63 and p73 in human cancer: defining the network. Oncogene 26(36):5169–5183PubMedCrossRefGoogle Scholar
  21. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221PubMedCrossRefGoogle Scholar
  22. Donovan SL, Schweers B, Martins R, Johnson D, Dyer MA (2006) Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol 4:14PubMedCrossRefGoogle Scholar
  23. Efeyan A, Garcia-Cao I, Herranz D, Velasco-Miguel S, Serrano M (2006) Tumour biology: policing of oncogene activity by p53. Nature 443(7108):159PubMedCrossRefGoogle Scholar
  24. Fedele M, Visone R, De Martino I, Troncone G, Palmieri D, Battista S et al (2006) HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 9(6):459–471PubMedCrossRefGoogle Scholar
  25. Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK (2008) Epigenetic reprogramming by adenovirus e1a. Science 321(5892):1086–1088PubMedCrossRefGoogle Scholar
  26. Flesken-Nikitin A, Choi KC, Eng JP, Shmidt EN, Nikitin AY (2003) Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 63(13):3459–3463PubMedGoogle Scholar
  27. Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7(4):363–373PubMedCrossRefGoogle Scholar
  28. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM et al (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089):643–646PubMedCrossRefGoogle Scholar
  29. Garriga J, Limon A, Mayol X, Rane SG, Albrecht JH, Reddy EP et al (1998) Differential regulation of the retinoblastoma family of proteins during cell proliferation and differentiation. Biochem J 333(Pt 3):645–654PubMedGoogle Scholar
  30. Harvey M, McArthur MJ, Montgomery CA Jr, Bradley A, Donehower LA (1993) Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 7(10):938–943PubMedGoogle Scholar
  31. Hinkal G, Parikh N, Donehower LA (2009) Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS One 4(8):e6654, PMCID: 2721630PubMedCrossRefGoogle Scholar
  32. Ho VM, Schaffer BE, Karnezis AN, Park KS, Sage J (2009) The retinoblastoma gene Rb and its family member p130 suppress lung adenocarcinoma induced by oncogenic K-Ras. Oncogene 28(10):1393–1399PubMedCrossRefGoogle Scholar
  33. Honda S, Tanaka-Kosugi C, Yamada S, Sano T, Matsumoto T, Itakura M et al (2003) Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. Endocr J 50(3):309–318PubMedCrossRefGoogle Scholar
  34. Iaquinta PJ, Lees JA (2007) Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 19(6):649–657PubMedCrossRefGoogle Scholar
  35. Ichimura K, Hanafusa H, Takimoto H, Ohgama Y, Akagi T, Shimizu K (2000) Structure of the human retinoblastoma-related p107 gene and its intragenic deletion in a B-cell lymphoma cell line. Gene 251(1):37–43PubMedCrossRefGoogle Scholar
  36. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359(6393):295–300PubMedCrossRefGoogle Scholar
  37. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4(1):1–7PubMedCrossRefGoogle Scholar
  38. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M et al (2005) The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65(22):10280–10288PubMedCrossRefGoogle Scholar
  39. Jiang Z, Zacksenhaus E (2002) Coordinated expression of Rb gene family in the mammary gland. Mech Dev 119(Suppl 1):S39–S42PubMedCrossRefGoogle Scholar
  40. Jiang Z, Zacksenhaus E, Gallie BL, Phillips RA (1997) The retinoblastoma gene family is differentially expressed during embryogenesis. Oncogene 14(15):1789–1797PubMedCrossRefGoogle Scholar
  41. Johnson TM, Attardi LD (2006) Dissecting p53 tumor suppressor function in vivo through the analysis of genetically modified mice. Cell Death Differ 13(6):902–908PubMedCrossRefGoogle Scholar
  42. Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM et al (2006) p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA 103(22):8435–8440, PMCID: 1482510PubMedCrossRefGoogle Scholar
  43. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119(6):861–872PubMedCrossRefGoogle Scholar
  44. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444(7115):61–66PubMedCrossRefGoogle Scholar
  45. LeCouter JE, Kablar B, Whyte PF, Ying C, Rudnicki MA (1998a) Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125(23):4669–4679PubMedGoogle Scholar
  46. LeCouter JE, Kablar B, Hardy WR, Ying C, Megeney LA, May LL et al (1998b) Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell cycle in mice lacking the Rb-related p107 gene. Mol Cell Biol 18(12):7455–7465PubMedGoogle Scholar
  47. Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235(4794):1394–1399PubMedCrossRefGoogle Scholar
  48. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K et al (1992) Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359(6393):288–294PubMedCrossRefGoogle Scholar
  49. Lee MH, Williams BO, Mulligan G, Mukai S, Bronson RT, Dyson N et al (1996) Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev 10(13):1621–1632PubMedCrossRefGoogle Scholar
  50. Levine AJ (1989) The p53 tumor suppressor gene and gene product. Princess Takamatsu Symp 20:221–230PubMedGoogle Scholar
  51. Levine AJ (2009) The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384(2):285–293PubMedCrossRefGoogle Scholar
  52. Levine AJ, Hu W, Feng Z (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ 13(6):1027–1036PubMedCrossRefGoogle Scholar
  53. Liao MJ, Zhang XX, Hill R, Gao J, Qumsiyeh MB, Nichols W et al (1998) No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol Cell Biol 18(6):3495–3501, PMCID: 108930PubMedGoogle Scholar
  54. Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A et al (2004) Somatic mutation of p53 leads to estrogen receptor alpha-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 64(10):3525–3532PubMedCrossRefGoogle Scholar
  55. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36(1):63–68PubMedCrossRefGoogle Scholar
  56. Lu X, Yang C, Hill R, Yin C, Hollander MC, Fornace AJ Jr et al (2008) Inactivation of gadd45a sensitizes epithelial cancer cells to ionizing radiation in vivo resulting in prolonged survival. Cancer Res 68(10):3579–3583PubMedCrossRefGoogle Scholar
  57. Maandag EC, van der Valk M, Vlaar M, Feltkamp C, O’Brien J, van Roon M et al (1994) Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J 13(18):4260–4268PubMedGoogle Scholar
  58. Macleod KF, Hu Y, Jacks T (1996) Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J 15(22):6178–6188PubMedGoogle Scholar
  59. Macpherson D (2008) Insights from mouse models into human retinoblastoma. Cell Div 3(1):9PubMedCrossRefGoogle Scholar
  60. MacPherson D, Sage J, Kim T, Ho D, McLaughlin ME, Jacks T (2004) Cell type-specific effects of Rb deletion in the murine retina. Genes Dev 18(14):1681–1694PubMedCrossRefGoogle Scholar
  61. MacPherson D, Conkrite K, Tam M, Mukai S, Mu D, Jacks T (2007) Murine bilateral retinoblastoma exhibiting rapid-onset, metastatic progression and N-myc gene amplification. EMBO J 26(3):784–794PubMedCrossRefGoogle Scholar
  62. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250(4985):1233–1238PubMedCrossRefGoogle Scholar
  63. Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127(7):1323–1334PubMedCrossRefGoogle Scholar
  64. Masciullo V, Berardengo E, Boglione A, Sgambato A, Bernardi A, Forni M et al (2008) The retinoblastoma family member pRb2/p130 is an independent predictor of survival in human soft tissue sarcomas. Clin Cancer Res 14(15):4775–4779PubMedCrossRefGoogle Scholar
  65. McCarthy SA, Symonds HS, Van Dyke T (1994) Regulation of apoptosis in transgenic mice by simian virus 40T antigen-mediated inactivation of p53. Proc Natl Acad Sci USA 91(9):3979–3983PubMedCrossRefGoogle Scholar
  66. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A (2003) Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4(3):181–189PubMedCrossRefGoogle Scholar
  67. Morris EJ, Dyson NJ (2001) Retinoblastoma protein partners. Adv Cancer Res 82:1–54PubMedCrossRefGoogle Scholar
  68. Nacht M, Jacks T (1998) V(D)J recombination is not required for the development of lymphoma in p53-deficient mice. Cell Growth Differ 9(2):131–138PubMedGoogle Scholar
  69. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al (2004) Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119(6):847–860PubMedCrossRefGoogle Scholar
  70. Paggi MG, Giordano A (2001) Who is the boss in the retinoblastoma family? The point of view of Rb2/p130, the little brother. Cancer Res 61(12):4651–4654PubMedGoogle Scholar
  71. Pan H, Yin C, Dyson NJ, Harlow E, Yamasaki L, Van Dyke T (1998) Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol Cell 2(3):283–292PubMedCrossRefGoogle Scholar
  72. Perez-Losada J, Wu D, DelRosario R, Balmain A, Mao JH (2005) p63 and p73 do not contribute to p53-mediated lymphoma suppressor activity in vivo. Oncogene 24(35):5521–5524PubMedCrossRefGoogle Scholar
  73. Priya K, Jada SR, Quah BL, Quah TC, Lai PS (2009) High incidence of allelic loss at 16q12.2 region spanning RBL2/p130 gene in retinoblastoma. Cancer Biol Ther 8(8):714–717PubMedCrossRefGoogle Scholar
  74. Saenz Robles MT, Symonds H, Chen J, Van Dyke T (1994) Induction versus progression of brain tumor development: differential functions for the pRB- and p53-targeting domains of simian virus 40T antigen. Mol Cell Biol 14(4):2686–2698PubMedGoogle Scholar
  75. Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T (2003) Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424(6945):223–228PubMedCrossRefGoogle Scholar
  76. Sanseverino F, Torricelli M, Petraglia F, Giordano A (2003) Role of the retinoblastoma family in gynecological cancer. Cancer Biol Ther 2(6):636–641PubMedGoogle Scholar
  77. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1(3):289–298PubMedCrossRefGoogle Scholar
  78. Sherr CJ (2004) Principles of tumor suppression. Cell 116(2):235–246PubMedCrossRefGoogle Scholar
  79. Simin K, Wu H, Lu L, Pinkel D, Albertson D, Cardiff RD et al (2004) pRb inactivation in mammary cells reveals common mechanisms for tumor initiation and progression in divergent epithelia. PLoS Biol 2(2):E22, PMCID: 340938PubMedCrossRefGoogle Scholar
  80. Smith EJ, Leone G, Nevins JR (1998) Distinct mechanisms control the accumulation of the Rb-related p107 and p130 proteins during cell growth. Cell Growth Differ 9(4):297–303PubMedGoogle Scholar
  81. Soussi T, Lozano G (2005) p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331(3):834–842PubMedCrossRefGoogle Scholar
  82. Stiewe T (2007) The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 7(3):165–168PubMedCrossRefGoogle Scholar
  83. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T et al (1994a) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78(4):703–711PubMedCrossRefGoogle Scholar
  84. Symonds H, Krall L, Remington L, Saenz Robles M, Jacks T, Van Dyke T (1994b) p53-dependent apoptosis in vivo: impact of p53 inactivation on tumorigenesis. Cold Spring Harb Symp Quant Biol 59:247–257PubMedGoogle Scholar
  85. Takimoto H, Tsukuda K, Ichimura K, Hanafusa H, Nakamura A, Oda M et al (1998) Genetic alterations in the retinoblastoma protein-related p107 gene in human hematologic malignancies. Biochem Biophys Res Commun 251(1):264–268PubMedCrossRefGoogle Scholar
  86. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22(10):1337–1344, PMCID: 2377188PubMedCrossRefGoogle Scholar
  87. Tomasini R, Mak TW, Melino G (2008) The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol 18(5):244–252PubMedCrossRefGoogle Scholar
  88. Tosi GM, Trimarchi C, Macaluso M, La Sala D, Ciccodicola A, Lazzi S et al (2005) Genetic and epigenetic alterations of RB2/p130 tumor suppressor gene in human sporadic retinoblastoma: implications for pathogenesis and therapeutic approach. Oncogene 24(38):5827–5836PubMedCrossRefGoogle Scholar
  89. van den Heuvel S, Dyson NJ (2008) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9(9):713–724PubMedCrossRefGoogle Scholar
  90. Van Dyke T (2007) p53 and tumor suppression. N Engl J Med 356(1):79–81PubMedCrossRefGoogle Scholar
  91. Vanderluit JL, Ferguson KL, Nikoletopoulou V, Parker M, Ruzhynsky V, Alexson T et al (2004) p107 regulates neural precursor cells in the mammalian brain. J Cell Biol 166(6):853–863PubMedCrossRefGoogle Scholar
  92. Vanderluit JL, Wylie CA, McClellan KA, Ghanem N, Fortin A, Callaghan S et al (2007) The Retinoblastoma family member p107 regulates the rate of progenitor commitment to a neuronal fate. J Cell Biol 178(1):129–139PubMedCrossRefGoogle Scholar
  93. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128):661–665PubMedCrossRefGoogle Scholar
  94. Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, Weissman IL et al (2008) Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3(4):416–428PubMedCrossRefGoogle Scholar
  95. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604PubMedCrossRefGoogle Scholar
  96. Wikenheiser-Brokamp KA (2006) Retinoblastoma family proteins: insights gained through genetic manipulation of mice. Cell Mol Life Sci 63(7–8):767–780PubMedCrossRefGoogle Scholar
  97. Williams BO, Schmitt EM, Remington L, Bronson RT, Albert DM, Weinberg RA et al (1994) Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J 13(18):4251–4259PubMedGoogle Scholar
  98. Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1(2):157–168PubMedCrossRefGoogle Scholar
  99. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660PubMedCrossRefGoogle Scholar
  100. Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385(6617):637–640PubMedCrossRefGoogle Scholar
  101. Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T et al (2007) Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83(2):153–162PubMedCrossRefGoogle Scholar
  102. Zhang J, Gray J, Wu L, Leone G, Rowan S, Cepko CL et al (2004) Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat Genet 36(4):351–360PubMedCrossRefGoogle Scholar
  103. Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P et al (2006) Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66(16):7889–7898PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pediatrics and GeneticsStanford UniversityStanfordUSA
  2. 2.Department of Radiation and Cancer BiologyStanford University School of MedicineStanfordUSA
  3. 3.Mouse Cancer Genetics ProgramNational Cancer Institute at FrederickFrederickUSA

Personalised recommendations