Imaging Mouse Models of Human Cancer

  • Jennifer A. Prescher
  • Christopher H. Contag


While long-recognized as vital components of cancer research, mouse models largely remained a “black box” until the development of advanced tools for preclinical imaging (Edinger et al. 2002; Van Dyke and Jacks 2002; Hirst and Balmain 2004; Lyons 2005). The dynamics of cancer progression, metastatic spread, and therapeutic response were difficult to study without noninvasive access to real-time information in living animals. Histology and other ex vivo analyses provided some insight into the molecular features of malignancy, but required biopsy and invasive acquisition, or were limited to terminal samples at necropsy. Moreover, such measurements offered only a static snapshot of disease and therapeutic outcome, and did not capture the active nature of malignancy or the dynamic changes associated with treatment. Overcoming these limitations required a set of tools that could probe tumor cells in their native habitat, and track molecular and biochemical changes accompanying tumor growth and regression in real time.


Positron Emission Tomography Green Fluorescent Protein Radionuclide Imaging Mouse Tumor Model Small Animal Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



J.A.P. is supported by grants from the Susan G. Komen Foundation and the National Cancer Institute. The authors also thank M. Helms and M. Sellmyer for their helpful comments.


  1. Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49(4):349–360PubMedGoogle Scholar
  2. Akins EJ, Dubey P (2008) Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 49(Suppl 2):180S–195SPubMedCrossRefGoogle Scholar
  3. Alexandrakis G, Brown EB et al (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10(2):203–207PubMedCrossRefGoogle Scholar
  4. Arvanitis C, Bendapudi PK et al (2008) Cancer Biol Ther 7(12):1947–1951PubMedCrossRefGoogle Scholar
  5. Atri M (2006) New technologies and directed agents for applications of cancer imaging. J Clin Oncol 24(20):3299–3308PubMedCrossRefGoogle Scholar
  6. Barrett T, Brechbiel M et al (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26(2):235–249PubMedCrossRefGoogle Scholar
  7. Benaron DA, Cheong WF et al (1997) Tissue optics. Science 276(5321):2002–2003PubMedCrossRefGoogle Scholar
  8. Benvin AL, Creeger Y et al (2007) Fluorescent DNA nanotags: supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructured DNA templates. J Am Chem Soc 129(7):2025–2034PubMedCrossRefGoogle Scholar
  9. Blasberg RG, Gelovani-Tjuvajev J (2002) In vivo molecular-genetic imaging. J Cell Biochem Suppl 39:172–183PubMedCrossRefGoogle Scholar
  10. Blum G, von Degenfeld G et al (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3(10):668–677PubMedCrossRefGoogle Scholar
  11. Boissonnas A, Fetler L et al (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356PubMedCrossRefGoogle Scholar
  12. Bonasio R, Carman CV et al (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc Natl Acad Sci USA 104(37):14753–14758PubMedCrossRefGoogle Scholar
  13. Braakman N, Oerther T et al (2008) High resolution localized two-dimensional MR spectroscopy in mouse brain in vivo. Magn Reson Med 60(2):449–456PubMedCrossRefGoogle Scholar
  14. Bremer C, Tung CH et al (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222(3):814–818PubMedCrossRefGoogle Scholar
  15. Bullen A (2008) Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7(1):54–67PubMedCrossRefGoogle Scholar
  16. Bulte JW, Zhang S et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96(26):15256–15261PubMedCrossRefGoogle Scholar
  17. Cahalan MD, Parker I et al (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2(11):872–880PubMedCrossRefGoogle Scholar
  18. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11):1840–1854PubMedCrossRefGoogle Scholar
  19. Cao YA, Bachmann MH et al (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80(1):134–139PubMedCrossRefGoogle Scholar
  20. Cherry SR (2006) Multimodality in vivo imaging systems: twice the power or double the trouble? Annu Rev Biomed Eng 8:35–62PubMedCrossRefGoogle Scholar
  21. Chudakov DM, Lukyanov S et al (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613PubMedCrossRefGoogle Scholar
  22. Contag CH (2007) In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. Annu Rev Pathol 2:277–305PubMedCrossRefGoogle Scholar
  23. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260PubMedCrossRefGoogle Scholar
  24. Contag CH, Contag PR et al (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18(4):593–603PubMedCrossRefGoogle Scholar
  25. Contag CH, Ross BD (2002) It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16(4):378–387PubMedCrossRefGoogle Scholar
  26. Costantini DL, Chan C et al (2007) (111)In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med 48(8):1357–1368PubMedCrossRefGoogle Scholar
  27. Day SE, Kettunen MI et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13(11):1382–1387PubMedCrossRefGoogle Scholar
  28. Edinger M, Cao YA et al (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38(16):2128–2136PubMedCrossRefGoogle Scholar
  29. Fan F, Binkowski BF et al (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem Biol 3(6):346–351PubMedCrossRefGoogle Scholar
  30. Ferrara K, Pollard R et al (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447PubMedCrossRefGoogle Scholar
  31. Fournier LS, Cuenod CA et al (2007) Imaging of response to treatment in oncology. J Radiol 88(6):829–843PubMedCrossRefGoogle Scholar
  32. Franc BL, Acton PD et al (2008) Small-animal SPECT and SPECT/CT: important tools for ­preclinical investigation. J Nucl Med 49(10):1651–1663PubMedCrossRefGoogle Scholar
  33. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634PubMedCrossRefGoogle Scholar
  34. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):645–658PubMedCrossRefGoogle Scholar
  35. Frullano L, Meade TJ (2007) Multimodal MRI contrast agents. J Biol Inorg Chem 12(7):939–949PubMedCrossRefGoogle Scholar
  36. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693PubMedCrossRefGoogle Scholar
  37. Gao X, Cui Y et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976PubMedCrossRefGoogle Scholar
  38. Georgakoudi I, Solban N et al (2004) In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Res 64(15):5044–5047PubMedCrossRefGoogle Scholar
  39. Giepmans BN, Adams SR et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224PubMedCrossRefGoogle Scholar
  40. Gilad AA, McMahon MT et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25(2):217–219PubMedCrossRefGoogle Scholar
  41. Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326PubMedCrossRefGoogle Scholar
  42. Grimm J, Kirsch DG et al (2005) Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc Natl Acad Sci USA 102(40):14404–14409PubMedCrossRefGoogle Scholar
  43. Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7(1):5–15PubMedGoogle Scholar
  44. Halin C, Rodrigo Mora J et al (2005) In vivo imaging of lymphocyte trafficking. Annu Rev Cell Dev Biol 21:581–603PubMedCrossRefGoogle Scholar
  45. Hamstra DA, Rehemtulla A et al (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 25(26):4104–4109PubMedCrossRefGoogle Scholar
  46. Hauff P, Reinhardt M et al (2008) Ultrasound basics. Handb Exp Pharmacol (185 Pt 1):91–107Google Scholar
  47. Helms MW, Brandt BH et al (2006) Options for visualizing metastatic disease in the living body. Contrib Microbiol 13:209–231PubMedCrossRefGoogle Scholar
  48. Herschman HR (2003a) Micro-PET imaging and small animal models of disease. Curr Opin Immunol 15(4):378–384PubMedCrossRefGoogle Scholar
  49. Herschman HR (2003b) Molecular imaging: looking at problems, seeing solutions. Science 302(5645):605–608PubMedCrossRefGoogle Scholar
  50. Hirst GL, Balmain A (2004) Forty years of cancer modelling in the mouse. Eur J Cancer 40(13):1974–1980PubMedCrossRefGoogle Scholar
  51. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5(10):796–806PubMedCrossRefGoogle Scholar
  52. Hofmann M, Steinke F et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11):1875–1883PubMedCrossRefGoogle Scholar
  53. Howarth M, Liu W et al (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5(5):397–399PubMedCrossRefGoogle Scholar
  54. Hsiung PL, Hardy J et al (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14(4):454–458PubMedCrossRefGoogle Scholar
  55. Inoue Y, Nomura Y et al (2006) Imaging living mice using a 1-T compact MRI system. J Magn Reson Imaging 24(4):901–907PubMedCrossRefGoogle Scholar
  56. Jacobson GB, Shinde R et al (2008) Sustained release of drugs dispersed in polymer nanoparticles. Angew Chem Int Ed Engl 47(41):7880–7882PubMedCrossRefGoogle Scholar
  57. Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293(7):855–862PubMedCrossRefGoogle Scholar
  58. Jain RK, Munn LL et al (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2(4):266–276PubMedCrossRefGoogle Scholar
  59. Jiang T, Olson ES et al (2004) Tumor imaging by means of proteolytic activation of cell-­penetrating peptides. Proc Natl Acad Sci USA 101(51):17867–17872PubMedCrossRefGoogle Scholar
  60. Jones LR, Goun EA et al (2006) Releasable luciferin-transporter conjugates: tools for the real-time analysis of cellular uptake and release. J Am Chem Soc 128(20):6526–6527PubMedCrossRefGoogle Scholar
  61. Jonkers J, Berns A (2002) Conditional mouse models of sporadic cancer. Nat Rev Cancer 2(4):251–265PubMedCrossRefGoogle Scholar
  62. Kanno A, Yamanaka Y et al (2007) Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew Chem Int Ed Engl 46(40):7595–7599PubMedCrossRefGoogle Scholar
  63. Karnoub AE, Dash AB et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMedCrossRefGoogle Scholar
  64. Kurhanewicz J, Bok R et al (2008) Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 49(3):341–344PubMedCrossRefGoogle Scholar
  65. Larson DR, Zipfel WR et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436PubMedCrossRefGoogle Scholar
  66. Laxman B, Hall DE et al (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99(26):16551–16555PubMedCrossRefGoogle Scholar
  67. Loening AM, Wu AM et al (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4(8):641–643PubMedCrossRefGoogle Scholar
  68. Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49(1):1–4PubMedCrossRefGoogle Scholar
  69. Luker GD, Pica CM et al (2003) Imaging 26S proteasome activity and inhibition in living mice. Nat Med 9(7):969–973PubMedCrossRefGoogle Scholar
  70. Luker GD, Sharma V et al (2002) Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci USA 99(10):6961–6966PubMedCrossRefGoogle Scholar
  71. Luker KE, Gupta M et al (2009) Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 23(3):823–834PubMedCrossRefGoogle Scholar
  72. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205(2):194–205PubMedCrossRefGoogle Scholar
  73. Ma L, Teruya-Feldstein J et al (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688PubMedCrossRefGoogle Scholar
  74. Makale M (2007) Intravital imaging and cell invasion. Methods Enzymol 426:375–401PubMedCrossRefGoogle Scholar
  75. Mandl S, Schimmelpfennig C et al (2002) Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J Cell Biochem Suppl 39:239–248PubMedCrossRefGoogle Scholar
  76. Mani SA, Guo W et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedCrossRefGoogle Scholar
  77. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580PubMedCrossRefGoogle Scholar
  78. Masuda H, Okano HJ et al (2008) In vivo imaging in humanized mice. Curr Top Microbiol Immunol 324:179–196PubMedCrossRefGoogle Scholar
  79. McAllister SS, Gifford AM et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133(6):994–1005PubMedCrossRefGoogle Scholar
  80. Meade TJ, Taylor AK et al (2003) New magnetic resonance contrast agents as biochemical reporters. Curr Opin Neurobiol 13(5):597–602PubMedCrossRefGoogle Scholar
  81. Meric P, Autret G et al (2004) In vivo 2D magnetic resonance spectroscopy of small animals. MAGMA 17(3–6):317–338PubMedCrossRefGoogle Scholar
  82. Merzlyak EM, Goedhart J et al (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4(7):555–557PubMedCrossRefGoogle Scholar
  83. Michalet X, Pinaud FF et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544PubMedCrossRefGoogle Scholar
  84. Min JJ, Nguyen VH et al (2008) Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 3(4):629–636PubMedCrossRefGoogle Scholar
  85. Mrass P, Takano H et al (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203(12):2749–2761PubMedCrossRefGoogle Scholar
  86. Nie S, Xing Y et al (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288PubMedCrossRefGoogle Scholar
  87. Nieman BJ, Bock NA et al (2005) Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed 18(7):447–468PubMedCrossRefGoogle Scholar
  88. Nilsson FY, Tolmachev V (2007) Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel 10(2):167–175PubMedGoogle Scholar
  89. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33PubMedCrossRefGoogle Scholar
  90. Ntziachristos V, Bremer C et al (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208PubMedGoogle Scholar
  91. Ntziachristos V, Schellenberger EA et al (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101(33):12294–12299PubMedCrossRefGoogle Scholar
  92. O’Connell-Rodwell CE, Mackanos MA et al (2008) In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse. J Biomed Opt 13(3):030501PubMedCrossRefGoogle Scholar
  93. O’Connell-Rodwell CE, Shriver D et al (2004) A genetic reporter of thermal stress defines physiologic zones over a defined temperature range. FASEB J 18(2):264–271PubMedCrossRefGoogle Scholar
  94. Olafsen T, Gu Z et al (2007) Targeting, imaging, and therapy using a humanized antiprostate stem cell antigen (PSCA) antibody. J Immunother 30(4):396–405PubMedCrossRefGoogle Scholar
  95. Patterson SS, Dionisi HM et al (2005) Codon optimization of bacterial luciferase (lux) for expression in mammalian cells. J Ind Microbiol Biotechnol 32(3):115–123PubMedCrossRefGoogle Scholar
  96. Perkins AC, Missailidis S (2007) Radiolabelled aptamers for tumour imaging and therapy. Q J Nucl Med Mol Imaging 51(4):292–296PubMedGoogle Scholar
  97. Pickhardt PJ, Halberg RB et al (2005) Proc Natl Acad Sci USA 102(9):3419–3422PubMedGoogle Scholar
  98. Popovtzer R, Agrawal A et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596PubMedCrossRefGoogle Scholar
  99. Rabinovich BA, Ye Y et al (2008) Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci USA 105(38):14342–14346PubMedCrossRefGoogle Scholar
  100. Raman V, Pathak AP et al (2007) Magnetic resonance imaging and spectroscopy of transgenic models of cancer. NMR Biomed 20(3):186–199PubMedCrossRefGoogle Scholar
  101. Rao J, Dragulescu-Andrasi A et al (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25PubMedCrossRefGoogle Scholar
  102. Ray P, Tsien R et al (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67(7):3085–3093PubMedCrossRefGoogle Scholar
  103. Rice BW, Cable MD et al (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6(4):432–440PubMedCrossRefGoogle Scholar
  104. Ritman EL (2002) Molecular imaging in small animals – roles for micro-CT. J Cell Biochem Suppl 39:116–124PubMedCrossRefGoogle Scholar
  105. Ritman EL (2004) Micro-computed tomography-current status and developments. Annu Rev Biomed Eng 6:185–208PubMedCrossRefGoogle Scholar
  106. Rutten A, Prokop M (2007) Contrast agents in X-ray computed tomography and its applications in oncology. Anticancer Agents Med Chem 7(3):307–316PubMedCrossRefGoogle Scholar
  107. Safran M, Kim WY et al (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci USA 103(1):105–110PubMedCrossRefGoogle Scholar
  108. Sevick-Muraca EM, Houston JP et al (2002) Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 6(5):642–650PubMedCrossRefGoogle Scholar
  109. Shachaf CM, Felsher DW (2005) Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res 65(11):4471–4474PubMedCrossRefGoogle Scholar
  110. Shah K, Tang Y et al (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22(44):6865–6872PubMedCrossRefGoogle Scholar
  111. Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2(2):215–225PubMedCrossRefGoogle Scholar
  112. Shaner NC, Steinbach PA et al (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909PubMedCrossRefGoogle Scholar
  113. Sharma V, Prior JL et al (2005) Characterization of a 67Ga/68Ga radiopharmaceutical for SPECT and PET of MDR1 P-glycoprotein transport activity in vivo: validation in multidrug-resistant tumors and at the blood-brain barrier. J Nucl Med 46(2):354–364PubMedGoogle Scholar
  114. Shcherbo D, Merzlyak EM et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4(9):741–746PubMedCrossRefGoogle Scholar
  115. Simoes RV, Martinez-Aranda A et al (2008) Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by MRI/MRS. MAGMA 21(4):237–249PubMedCrossRefGoogle Scholar
  116. Singh M, Johnson L (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 12(18):5312–5328PubMedCrossRefGoogle Scholar
  117. Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10PubMedCrossRefGoogle Scholar
  118. Stell A, Biserni A et al (2007) Cancer modeling: modern imaging applications in the generation of novel animal model systems to study cancer progression and therapy. Int J Biochem Cell Biol 39(7–8):1288–1296PubMedCrossRefGoogle Scholar
  119. Stewart CN Jr (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24(4):155–162PubMedCrossRefGoogle Scholar
  120. Strack RL, Strongin DE et al (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5(11):955–957PubMedCrossRefGoogle Scholar
  121. Sundaresan G, Yazaki PJ et al (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44(12):1962–1969PubMedGoogle Scholar
  122. Sweeney TJ, Mailander V et al (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96(21):12044–12049PubMedCrossRefGoogle Scholar
  123. Swirski FK, Berger CR et al (2007) A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS One 2(10):e1075PubMedCrossRefGoogle Scholar
  124. Swirski FK, Pittet MJ et al (2006) Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci USA 103(27):10340–10345PubMedCrossRefGoogle Scholar
  125. Tavazoie SF, Alarcon C et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152PubMedCrossRefGoogle Scholar
  126. Thorne SH, Negrin RS et al (2006) Synergistic antitumor effects of immune cell-viral biotherapy. Science 311(5768):1780–1784PubMedCrossRefGoogle Scholar
  127. Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53(4):R1–R39PubMedCrossRefGoogle Scholar
  128. Tung CH, Mahmood U et al (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60(17):4953–4958PubMedGoogle Scholar
  129. Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108(2):135–144PubMedCrossRefGoogle Scholar
  130. Venisnik KM, Olafsen T et al (2006) Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors. Protein Eng Des Sel 19(10):453–460PubMedCrossRefGoogle Scholar
  131. Vignjevic D, Fre S et al (2007) Conditional mouse models of cancer. Handb Exp Pharmacol (178):263–287Google Scholar
  132. Villalobos V, Naik S et al (2007) Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annu Rev Biomed Eng 9:321–349PubMedCrossRefGoogle Scholar
  133. Vooijs M, Jonkers J et al (2002) Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res 62(6):1862–1867PubMedGoogle Scholar
  134. Voura EB, Jaiswal JK et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998PubMedCrossRefGoogle Scholar
  135. Wehrman TS, von Degenfeld G et al (2006) Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat Methods 3(4):295–301PubMedCrossRefGoogle Scholar
  136. Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs 19(3):145–163PubMedCrossRefGoogle Scholar
  137. Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2(1):11–18PubMedCrossRefGoogle Scholar
  138. Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171PubMedCrossRefGoogle Scholar
  139. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589PubMedCrossRefGoogle Scholar
  140. Weissleder R, Tung CH et al (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378PubMedCrossRefGoogle Scholar
  141. Wender PA, Goun EA et al (2007) Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice. Proc Natl Acad Sci USA 104(25):10340–10345PubMedCrossRefGoogle Scholar
  142. Wurdinger T, Badr C et al (2008) A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods 5(2):171–173PubMedCrossRefGoogle Scholar
  143. Yang L, Yang H et al (2008) Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 26(3):326–334PubMedCrossRefGoogle Scholar
  144. Zabow G, Dodd S et al (2008) Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453(7198):1058–1063PubMedCrossRefGoogle Scholar
  145. Zhang L, Lee KC et al (2007) Molecular imaging of Akt kinase activity. Nat Med 13(9):1114–1119PubMedCrossRefGoogle Scholar
  146. Zhao H, Doyle TC et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210PubMedCrossRefGoogle Scholar
  147. Zhao H, Doyle TC et al (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3(1):43–54PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jennifer A. Prescher
    • 1
  • Christopher H. Contag
    • 1
    • 2
    • 3
  1. 1.Molecular Imaging Program at StanfordStanford School of MedicineStanfordUSA
  2. 2.Department of PediatricsStanford School of MedicineStanfordUSA
  3. 3.Department of Microbiology and ImmunologyStanford School of MedicineStanfordUSA

Personalised recommendations