Skip to main content

Imaging Mouse Models of Human Cancer

  • Chapter
  • First Online:

Abstract

While long-recognized as vital components of cancer research, mouse models largely remained a “black box” until the development of advanced tools for preclinical imaging (Edinger et al. 2002; Van Dyke and Jacks 2002; Hirst and Balmain 2004; Lyons 2005). The dynamics of cancer progression, metastatic spread, and therapeutic response were difficult to study without noninvasive access to real-time information in living animals. Histology and other ex vivo analyses provided some insight into the molecular features of malignancy, but required biopsy and invasive acquisition, or were limited to terminal samples at necropsy. Moreover, such measurements offered only a static snapshot of disease and therapeutic outcome, and did not capture the active nature of malignancy or the dynamic changes associated with treatment. Overcoming these limitations required a set of tools that could probe tumor cells in their native habitat, and track molecular and biochemical changes accompanying tumor growth and regression in real time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49(4):349–360

    PubMed  CAS  Google Scholar 

  • Akins EJ, Dubey P (2008) Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 49(Suppl 2):180S–195S

    Article  PubMed  CAS  Google Scholar 

  • Alexandrakis G, Brown EB et al (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10(2):203–207

    Article  PubMed  CAS  Google Scholar 

  • Arvanitis C, Bendapudi PK et al (2008) Cancer Biol Ther 7(12):1947–1951

    Article  PubMed  Google Scholar 

  • Atri M (2006) New technologies and directed agents for applications of cancer imaging. J Clin Oncol 24(20):3299–3308

    Article  PubMed  Google Scholar 

  • Barrett T, Brechbiel M et al (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26(2):235–249

    Article  PubMed  Google Scholar 

  • Benaron DA, Cheong WF et al (1997) Tissue optics. Science 276(5321):2002–2003

    Article  PubMed  CAS  Google Scholar 

  • Benvin AL, Creeger Y et al (2007) Fluorescent DNA nanotags: supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructured DNA templates. J Am Chem Soc 129(7):2025–2034

    Article  PubMed  CAS  Google Scholar 

  • Blasberg RG, Gelovani-Tjuvajev J (2002) In vivo molecular-genetic imaging. J Cell Biochem Suppl 39:172–183

    Article  PubMed  CAS  Google Scholar 

  • Blum G, von Degenfeld G et al (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3(10):668–677

    Article  PubMed  CAS  Google Scholar 

  • Boissonnas A, Fetler L et al (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356

    Article  PubMed  CAS  Google Scholar 

  • Bonasio R, Carman CV et al (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc Natl Acad Sci USA 104(37):14753–14758

    Article  PubMed  CAS  Google Scholar 

  • Braakman N, Oerther T et al (2008) High resolution localized two-dimensional MR spectroscopy in mouse brain in vivo. Magn Reson Med 60(2):449–456

    Article  PubMed  CAS  Google Scholar 

  • Bremer C, Tung CH et al (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222(3):814–818

    Article  PubMed  Google Scholar 

  • Bullen A (2008) Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7(1):54–67

    Article  PubMed  CAS  Google Scholar 

  • Bulte JW, Zhang S et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96(26):15256–15261

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD, Parker I et al (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2(11):872–880

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11):1840–1854

    Article  PubMed  CAS  Google Scholar 

  • Cao YA, Bachmann MH et al (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80(1):134–139

    Article  PubMed  Google Scholar 

  • Cherry SR (2006) Multimodality in vivo imaging systems: twice the power or double the trouble? Annu Rev Biomed Eng 8:35–62

    Article  PubMed  CAS  Google Scholar 

  • Chudakov DM, Lukyanov S et al (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23(12):605–613

    Article  PubMed  CAS  Google Scholar 

  • Contag CH (2007) In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. Annu Rev Pathol 2:277–305

    Article  PubMed  CAS  Google Scholar 

  • Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  • Contag CH, Contag PR et al (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18(4):593–603

    Article  PubMed  CAS  Google Scholar 

  • Contag CH, Ross BD (2002) It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16(4):378–387

    Article  PubMed  Google Scholar 

  • Costantini DL, Chan C et al (2007) (111)In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med 48(8):1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Day SE, Kettunen MI et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13(11):1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Edinger M, Cao YA et al (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38(16):2128–2136

    Article  PubMed  CAS  Google Scholar 

  • Fan F, Binkowski BF et al (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem Biol 3(6):346–351

    Article  PubMed  CAS  Google Scholar 

  • Ferrara K, Pollard R et al (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    Article  PubMed  CAS  Google Scholar 

  • Fournier LS, Cuenod CA et al (2007) Imaging of response to treatment in oncology. J Radiol 88(6):829–843

    Article  PubMed  CAS  Google Scholar 

  • Franc BL, Acton PD et al (2008) Small-animal SPECT and SPECT/CT: important tools for ­preclinical investigation. J Nucl Med 49(10):1651–1663

    Article  PubMed  Google Scholar 

  • Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  PubMed  CAS  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):645–658

    Article  PubMed  CAS  Google Scholar 

  • Frullano L, Meade TJ (2007) Multimodal MRI contrast agents. J Biol Inorg Chem 12(7):939–949

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Cui Y et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  PubMed  CAS  Google Scholar 

  • Georgakoudi I, Solban N et al (2004) In vivo flow cytometry: a new method for enumerating circulating cancer cells. Cancer Res 64(15):5044–5047

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN, Adams SR et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  PubMed  CAS  Google Scholar 

  • Gilad AA, McMahon MT et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25(2):217–219

    Article  PubMed  CAS  Google Scholar 

  • Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326

    Article  PubMed  CAS  Google Scholar 

  • Grimm J, Kirsch DG et al (2005) Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc Natl Acad Sci USA 102(40):14404–14409

    Article  PubMed  CAS  Google Scholar 

  • Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7(1):5–15

    PubMed  CAS  Google Scholar 

  • Halin C, Rodrigo Mora J et al (2005) In vivo imaging of lymphocyte trafficking. Annu Rev Cell Dev Biol 21:581–603

    Article  PubMed  CAS  Google Scholar 

  • Hamstra DA, Rehemtulla A et al (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 25(26):4104–4109

    Article  PubMed  Google Scholar 

  • Hauff P, Reinhardt M et al (2008) Ultrasound basics. Handb Exp Pharmacol (185 Pt 1):91–107

    Google Scholar 

  • Helms MW, Brandt BH et al (2006) Options for visualizing metastatic disease in the living body. Contrib Microbiol 13:209–231

    Article  PubMed  Google Scholar 

  • Herschman HR (2003a) Micro-PET imaging and small animal models of disease. Curr Opin Immunol 15(4):378–384

    Article  PubMed  CAS  Google Scholar 

  • Herschman HR (2003b) Molecular imaging: looking at problems, seeing solutions. Science 302(5645):605–608

    Article  PubMed  CAS  Google Scholar 

  • Hirst GL, Balmain A (2004) Forty years of cancer modelling in the mouse. Eur J Cancer 40(13):1974–1980

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5(10):796–806

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M, Steinke F et al (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11):1875–1883

    Article  PubMed  Google Scholar 

  • Howarth M, Liu W et al (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5(5):397–399

    Article  PubMed  CAS  Google Scholar 

  • Hsiung PL, Hardy J et al (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14(4):454–458

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Nomura Y et al (2006) Imaging living mice using a 1-T compact MRI system. J Magn Reson Imaging 24(4):901–907

    Article  PubMed  Google Scholar 

  • Jacobson GB, Shinde R et al (2008) Sustained release of drugs dispersed in polymer nanoparticles. Angew Chem Int Ed Engl 47(41):7880–7882

    Article  PubMed  CAS  Google Scholar 

  • Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293(7):855–862

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Munn LL et al (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2(4):266–276

    Article  PubMed  CAS  Google Scholar 

  • Jiang T, Olson ES et al (2004) Tumor imaging by means of proteolytic activation of cell-­penetrating peptides. Proc Natl Acad Sci USA 101(51):17867–17872

    Article  PubMed  CAS  Google Scholar 

  • Jones LR, Goun EA et al (2006) Releasable luciferin-transporter conjugates: tools for the real-time analysis of cellular uptake and release. J Am Chem Soc 128(20):6526–6527

    Article  PubMed  CAS  Google Scholar 

  • Jonkers J, Berns A (2002) Conditional mouse models of sporadic cancer. Nat Rev Cancer 2(4):251–265

    Article  PubMed  CAS  Google Scholar 

  • Kanno A, Yamanaka Y et al (2007) Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew Chem Int Ed Engl 46(40):7595–7599

    Article  PubMed  CAS  Google Scholar 

  • Karnoub AE, Dash AB et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Bok R et al (2008) Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 49(3):341–344

    Article  PubMed  CAS  Google Scholar 

  • Larson DR, Zipfel WR et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Laxman B, Hall DE et al (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99(26):16551–16555

    Article  PubMed  CAS  Google Scholar 

  • Loening AM, Wu AM et al (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4(8):641–643

    Article  PubMed  CAS  Google Scholar 

  • Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49(1):1–4

    Article  PubMed  Google Scholar 

  • Luker GD, Pica CM et al (2003) Imaging 26S proteasome activity and inhibition in living mice. Nat Med 9(7):969–973

    Article  PubMed  CAS  Google Scholar 

  • Luker GD, Sharma V et al (2002) Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci USA 99(10):6961–6966

    Article  PubMed  CAS  Google Scholar 

  • Luker KE, Gupta M et al (2009) Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 23(3):823–834

    Article  PubMed  CAS  Google Scholar 

  • Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205(2):194–205

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Teruya-Feldstein J et al (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  PubMed  CAS  Google Scholar 

  • Makale M (2007) Intravital imaging and cell invasion. Methods Enzymol 426:375–401

    Article  PubMed  CAS  Google Scholar 

  • Mandl S, Schimmelpfennig C et al (2002) Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J Cell Biochem Suppl 39:239–248

    Article  PubMed  CAS  Google Scholar 

  • Mani SA, Guo W et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Okano HJ et al (2008) In vivo imaging in humanized mice. Curr Top Microbiol Immunol 324:179–196

    Article  PubMed  CAS  Google Scholar 

  • McAllister SS, Gifford AM et al (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133(6):994–1005

    Article  PubMed  CAS  Google Scholar 

  • Meade TJ, Taylor AK et al (2003) New magnetic resonance contrast agents as biochemical reporters. Curr Opin Neurobiol 13(5):597–602

    Article  PubMed  CAS  Google Scholar 

  • Meric P, Autret G et al (2004) In vivo 2D magnetic resonance spectroscopy of small animals. MAGMA 17(3–6):317–338

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak EM, Goedhart J et al (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4(7):555–557

    Article  PubMed  CAS  Google Scholar 

  • Michalet X, Pinaud FF et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  PubMed  CAS  Google Scholar 

  • Min JJ, Nguyen VH et al (2008) Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 3(4):629–636

    Article  PubMed  CAS  Google Scholar 

  • Mrass P, Takano H et al (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203(12):2749–2761

    Article  PubMed  CAS  Google Scholar 

  • Nie S, Xing Y et al (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  PubMed  CAS  Google Scholar 

  • Nieman BJ, Bock NA et al (2005) Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed 18(7):447–468

    Article  PubMed  Google Scholar 

  • Nilsson FY, Tolmachev V (2007) Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel 10(2):167–175

    PubMed  CAS  Google Scholar 

  • Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V, Bremer C et al (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208

    PubMed  Google Scholar 

  • Ntziachristos V, Schellenberger EA et al (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101(33):12294–12299

    Article  PubMed  CAS  Google Scholar 

  • O’Connell-Rodwell CE, Mackanos MA et al (2008) In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse. J Biomed Opt 13(3):030501

    Article  PubMed  CAS  Google Scholar 

  • O’Connell-Rodwell CE, Shriver D et al (2004) A genetic reporter of thermal stress defines physiologic zones over a defined temperature range. FASEB J 18(2):264–271

    Article  PubMed  CAS  Google Scholar 

  • Olafsen T, Gu Z et al (2007) Targeting, imaging, and therapy using a humanized antiprostate stem cell antigen (PSCA) antibody. J Immunother 30(4):396–405

    Article  PubMed  CAS  Google Scholar 

  • Patterson SS, Dionisi HM et al (2005) Codon optimization of bacterial luciferase (lux) for expression in mammalian cells. J Ind Microbiol Biotechnol 32(3):115–123

    Article  PubMed  CAS  Google Scholar 

  • Perkins AC, Missailidis S (2007) Radiolabelled aptamers for tumour imaging and therapy. Q J Nucl Med Mol Imaging 51(4):292–296

    PubMed  CAS  Google Scholar 

  • Pickhardt PJ, Halberg RB et al (2005) Proc Natl Acad Sci USA 102(9):3419–3422

    PubMed  CAS  Google Scholar 

  • Popovtzer R, Agrawal A et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich BA, Ye Y et al (2008) Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci USA 105(38):14342–14346

    Article  PubMed  CAS  Google Scholar 

  • Raman V, Pathak AP et al (2007) Magnetic resonance imaging and spectroscopy of transgenic models of cancer. NMR Biomed 20(3):186–199

    Article  PubMed  Google Scholar 

  • Rao J, Dragulescu-Andrasi A et al (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Ray P, Tsien R et al (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67(7):3085–3093

    Article  PubMed  CAS  Google Scholar 

  • Rice BW, Cable MD et al (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6(4):432–440

    Article  PubMed  CAS  Google Scholar 

  • Ritman EL (2002) Molecular imaging in small animals – roles for micro-CT. J Cell Biochem Suppl 39:116–124

    Article  PubMed  CAS  Google Scholar 

  • Ritman EL (2004) Micro-computed tomography-current status and developments. Annu Rev Biomed Eng 6:185–208

    Article  PubMed  CAS  Google Scholar 

  • Rutten A, Prokop M (2007) Contrast agents in X-ray computed tomography and its applications in oncology. Anticancer Agents Med Chem 7(3):307–316

    Article  PubMed  CAS  Google Scholar 

  • Safran M, Kim WY et al (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci USA 103(1):105–110

    Article  PubMed  CAS  Google Scholar 

  • Sevick-Muraca EM, Houston JP et al (2002) Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 6(5):642–650

    Article  PubMed  CAS  Google Scholar 

  • Shachaf CM, Felsher DW (2005) Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res 65(11):4471–4474

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Tang Y et al (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22(44):6865–6872

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2(2):215–225

    Article  PubMed  Google Scholar 

  • Shaner NC, Steinbach PA et al (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Prior JL et al (2005) Characterization of a 67Ga/68Ga radiopharmaceutical for SPECT and PET of MDR1 P-glycoprotein transport activity in vivo: validation in multidrug-resistant tumors and at the blood-brain barrier. J Nucl Med 46(2):354–364

    PubMed  CAS  Google Scholar 

  • Shcherbo D, Merzlyak EM et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4(9):741–746

    Article  PubMed  CAS  Google Scholar 

  • Simoes RV, Martinez-Aranda A et al (2008) Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by MRI/MRS. MAGMA 21(4):237–249

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Johnson L (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 12(18):5312–5328

    Article  PubMed  CAS  Google Scholar 

  • Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10

    Article  PubMed  CAS  Google Scholar 

  • Stell A, Biserni A et al (2007) Cancer modeling: modern imaging applications in the generation of novel animal model systems to study cancer progression and therapy. Int J Biochem Cell Biol 39(7–8):1288–1296

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24(4):155–162

    Article  PubMed  CAS  Google Scholar 

  • Strack RL, Strongin DE et al (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5(11):955–957

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan G, Yazaki PJ et al (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44(12):1962–1969

    PubMed  CAS  Google Scholar 

  • Sweeney TJ, Mailander V et al (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96(21):12044–12049

    Article  PubMed  CAS  Google Scholar 

  • Swirski FK, Berger CR et al (2007) A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS One 2(10):e1075

    Article  PubMed  CAS  Google Scholar 

  • Swirski FK, Pittet MJ et al (2006) Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci USA 103(27):10340–10345

    Article  PubMed  CAS  Google Scholar 

  • Tavazoie SF, Alarcon C et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    Article  PubMed  CAS  Google Scholar 

  • Thorne SH, Negrin RS et al (2006) Synergistic antitumor effects of immune cell-viral biotherapy. Science 311(5768):1780–1784

    Article  PubMed  CAS  Google Scholar 

  • Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53(4):R1–R39

    Article  PubMed  CAS  Google Scholar 

  • Tung CH, Mahmood U et al (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60(17):4953–4958

    PubMed  CAS  Google Scholar 

  • Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108(2):135–144

    Article  PubMed  Google Scholar 

  • Venisnik KM, Olafsen T et al (2006) Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors. Protein Eng Des Sel 19(10):453–460

    Article  PubMed  CAS  Google Scholar 

  • Vignjevic D, Fre S et al (2007) Conditional mouse models of cancer. Handb Exp Pharmacol (178):263–287

    Google Scholar 

  • Villalobos V, Naik S et al (2007) Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annu Rev Biomed Eng 9:321–349

    Article  PubMed  CAS  Google Scholar 

  • Vooijs M, Jonkers J et al (2002) Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res 62(6):1862–1867

    PubMed  CAS  Google Scholar 

  • Voura EB, Jaiswal JK et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998

    Article  PubMed  CAS  Google Scholar 

  • Wehrman TS, von Degenfeld G et al (2006) Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat Methods 3(4):295–301

    Article  PubMed  CAS  Google Scholar 

  • Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs 19(3):145–163

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2(1):11–18

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Tung CH et al (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Goun EA et al (2007) Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice. Proc Natl Acad Sci USA 104(25):10340–10345

    Article  PubMed  CAS  Google Scholar 

  • Wurdinger T, Badr C et al (2008) A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods 5(2):171–173

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Yang H et al (2008) Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 26(3):326–334

    Article  PubMed  CAS  Google Scholar 

  • Zabow G, Dodd S et al (2008) Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453(7198):1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lee KC et al (2007) Molecular imaging of Akt kinase activity. Nat Med 13(9):1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Doyle TC et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Doyle TC et al (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3(1):43–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.A.P. is supported by grants from the Susan G. Komen Foundation and the National Cancer Institute. The authors also thank M. Helms and M. Sellmyer for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher H. Contag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prescher, J.A., Contag, C.H. (2012). Imaging Mouse Models of Human Cancer. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_11

Download citation

Publish with us

Policies and ethics