Advertisement

Expression Profiling of Mouse Models of Human Cancer: Model Categorization and Guidance for Preclinical Testing

  • Min Zhu
  • Aleksandra M. Michalowski
  • Jeffrey E. Green
Chapter

Abstract

Recent advances in the use of gene expression microarray technologies have been invaluable in deciphering molecular subtypes of human cancers as a first step toward “personalized medicine.” Similarly, high-throughput genomic approaches have revealed mechanisms of oncogenesis in genetically engineered mouse (GEM) cancer models, how cancer evolves, and in what ways these models recapitulate molecular features of human cancers. Sophisticated analyses and cross-species comparisons provide important ways to identify potentially novel therapeutic targets. This chapter reviews the recent progress in the application of gene expression profiling to GEM models representing a variety of human cancers, including breast, prostate, lung, liver, and colon cancers.

Keywords

Estrogen Receptor Gene Expression Profile Adenomatous Polyposis Coli Prostate Intraepithelial Neoplasia Human Lung Adenocarcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, Center for Cancer Research, National Cancer Institute.

References

  1. Aguirre AJ et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17(24):3112–3126PubMedCrossRefGoogle Scholar
  2. Auer H, Newsom DL, Kornacker K (2009) Expression profiling using affymetrix GeneChip microarrays. Methods Mol Biol 509:35–46PubMedCrossRefGoogle Scholar
  3. Bar-Or C, Czosnek H, Koltai H (2007) Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet 23(4):200–207PubMedCrossRefGoogle Scholar
  4. Benito M et al (2004) Adjustment of systematic microarray data biases. Bioinformatics 20(1):105–114PubMedCrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57(1):289–300Google Scholar
  6. Bilitewski U (2009) DNA microarrays: an introduction to the technology. Methods Mol Biol 509:1–14PubMedCrossRefGoogle Scholar
  7. Boivin GP et al (2003) Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124(3):762–777PubMedCrossRefGoogle Scholar
  8. Buckley BA (2007) Comparative environmental genomics in non-model species: using heterologous hybridization to DNA-based microarrays. J Exp Biol 210(Pt 9):1602–1606PubMedCrossRefGoogle Scholar
  9. Calvo A et al (2002) Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res 62(18):5325–5335PubMedGoogle Scholar
  10. American Cancer Society (2007) Cancer facts and figures. American Cancer Society, AtlantaGoogle Scholar
  11. Cardiff RD et al (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19(8):968–988PubMedCrossRefGoogle Scholar
  12. Christophorou MA et al (2005) Temporal dissection of p53 function in vitro and in vivo. Nat Genet 37(7):718–726PubMedCrossRefGoogle Scholar
  13. Chu S et al (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389):699–705PubMedCrossRefGoogle Scholar
  14. Coulouarn C et al (2006) Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology 44(4):1003–1011PubMedCrossRefGoogle Scholar
  15. D’Cruz CM et al (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7(2):235–239PubMedCrossRefGoogle Scholar
  16. Deeb KK et al (2007) Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res 67(17):8065–8080PubMedCrossRefGoogle Scholar
  17. Desai KV et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972PubMedCrossRefGoogle Scholar
  18. Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99(2):147–157PubMedCrossRefGoogle Scholar
  19. Eisen MB et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868PubMedCrossRefGoogle Scholar
  20. Ekins R, Chu FW (1999) Microarrays: their origins and applications. Trends Biotechnol 17(6):217–218PubMedCrossRefGoogle Scholar
  21. Ellwood-Yen K et al (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3):223–238PubMedCrossRefGoogle Scholar
  22. Ewald D et al (1996) Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273(5280):1384–1386PubMedCrossRefGoogle Scholar
  23. Faivre J et al (1998) Survival of patients with primary liver cancer, pancreatic cancer and biliary tract cancer in Europe. Eur J Cancer 34(14):2184–2190PubMedCrossRefGoogle Scholar
  24. Feng J et al (2007) Gene expression analysis of pancreatic cystic neoplasm in SV40Tag transgenic mice model. World J Gastroenterol 13(15):2218–2222PubMedGoogle Scholar
  25. Fontaniere S et al (2006) Gene expression profiling in insulinomas of Men1 beta-cell mutant mice reveals early genetic and epigenetic events involved in pancreatic beta-cell tumorigenesis. Endocr Relat Cancer 13(4):1223–1236PubMedCrossRefGoogle Scholar
  26. Gharaibeh RZ, Fodor AA, Gibas CJ (2007) Software note: using probe secondary structure information to enhance Affymetrix GeneChip background estimates. Comput Biol Chem 31(2):92–98PubMedCrossRefGoogle Scholar
  27. Gibbons DL et al (2009) Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma. PLoS One 4(4):e5401PubMedCrossRefGoogle Scholar
  28. Gingrich JR et al (1996) Metastatic prostate cancer in a transgenic mouse. Cancer Res 56(18): 4096–4102PubMedGoogle Scholar
  29. Glinsky GV et al (2003) Microarray analysis of xenograft-derived cancer cell lines representing multiple experimental models of human prostate cancer. Mol Carcinog 37(4):209–221PubMedCrossRefGoogle Scholar
  30. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115(6):1503–1521PubMedCrossRefGoogle Scholar
  31. Golub TR et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537PubMedCrossRefGoogle Scholar
  32. Granjeaud S, Bertucci F, Jordan BR (1999) Expression profiling: DNA arrays in many guises. Bioessays 21(9):781–790PubMedCrossRefGoogle Scholar
  33. Gray NS et al (1998) Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281(5376):533–538PubMedCrossRefGoogle Scholar
  34. Greenlee RT et al (2001) Cancer statistics, 2001. CA Cancer J Clin 51(1):15–36PubMedCrossRefGoogle Scholar
  35. Gunther EJ et al (2002) A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 16(3):283–292PubMedCrossRefGoogle Scholar
  36. Guo Z et al (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 22(24):5456–5465PubMedCrossRefGoogle Scholar
  37. He WW et al (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43(1):69–77PubMedCrossRefGoogle Scholar
  38. Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153PubMedCrossRefGoogle Scholar
  39. Hennighausen L et al (1995) Conditional gene expression in secretory tissues and skin of transgenic mice using the MMTV-LTR and the tetracycline responsive system. J Cell Biochem 59(4):463–472PubMedCrossRefGoogle Scholar
  40. Herschkowitz JI et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76PubMedCrossRefGoogle Scholar
  41. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18(12):1585–1592PubMedCrossRefGoogle Scholar
  42. Hughes TR et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126PubMedCrossRefGoogle Scholar
  43. Hughes TR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4):342–347PubMedCrossRefGoogle Scholar
  44. Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264PubMedCrossRefGoogle Scholar
  45. Jain N et al (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19(15):1945–1951PubMedCrossRefGoogle Scholar
  46. Jaluria P et al (2007) A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 6:4PubMedCrossRefGoogle Scholar
  47. Johnson L et al (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410(6832):1111–1116PubMedCrossRefGoogle Scholar
  48. Katzenellenbogen M et al (2007) Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res 5(11):1159–1170PubMedCrossRefGoogle Scholar
  49. Koliopanos A et al (2008) Molecular aspects of carcinogenesis in pancreatic cancer. Hepatobiliary Pancreat Dis Int 7(4):345–356PubMedGoogle Scholar
  50. Landis SH et al (1999) Cancer statistics, 1999. CA Cancer J Clin 49(1):8–31, 1PubMedCrossRefGoogle Scholar
  51. Leclerc D et al (2004) ApcMin/+ mouse model of colon cancer: gene expression profiling in tumors. J Cell Biochem 93(6):1242–1254PubMedCrossRefGoogle Scholar
  52. Lee JS et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36(12):1306–1311PubMedCrossRefGoogle Scholar
  53. Lee JS, Grisham JW, Thorgeirsson SS (2005) Comparative functional genomics for identifying models of human cancer. Carcinogenesis 26(6):1013–1020PubMedCrossRefGoogle Scholar
  54. Lindvall C et al (2006) The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem 281(46):35081–35087PubMedCrossRefGoogle Scholar
  55. Linnerth NM, Sirbovan K, Moorehead RA (2005) Use of a transgenic mouse model to identify markers of human lung tumors. Int J Cancer 114(6):977–982PubMedCrossRefGoogle Scholar
  56. Luo J et al (2010) A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J 10(4):278–291PubMedCrossRefGoogle Scholar
  57. Maroulakou IG et al (1994) Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci USA 91(23):11236–11240PubMedCrossRefGoogle Scholar
  58. Martinez C et al (2005) Expression profiling of murine intestinal adenomas reveals early deregulation of multiple matrix metalloproteinase (Mmp) genes. J Pathol 206(1):100–110PubMedCrossRefGoogle Scholar
  59. Marton MJ et al (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4(11):1293–1301PubMedCrossRefGoogle Scholar
  60. Meuwissen R, Berns A (2005) Mouse models for human lung cancer. Genes Dev 19(6):643–664PubMedCrossRefGoogle Scholar
  61. Moody SE et al (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2(6):451–461PubMedCrossRefGoogle Scholar
  62. Moorehead RA et al (2003) Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 22(6):853–857PubMedCrossRefGoogle Scholar
  63. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324PubMedCrossRefGoogle Scholar
  64. Naef F, Magnasco MO (2003) Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays. Phys Rev E Stat Nonlin Soft Matter Phys 68(1 Pt 1):011906PubMedCrossRefGoogle Scholar
  65. Nandan MO, Yang VW (2010) Genetic and chemical models of colorectal cancer in mice. Curr Colorectal Cancer Rep 6(2):51–59PubMedCrossRefGoogle Scholar
  66. Nemeth J et al (2009) S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology 50(4):1251–1262PubMedCrossRefGoogle Scholar
  67. Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32(6):448–457PubMedCrossRefGoogle Scholar
  68. Paoni NF et al (2003) Transcriptional profiling of the transition from normal intestinal epithelia to adenomas and carcinomas in the APCMin/+ mouse. Physiol Genomics 15(3):228–235PubMedGoogle Scholar
  69. Peeters JK, Van der Spek PJ (2005) Growing applications and advancements in microarray technology and analysis tools. Cell Biochem Biophys 43(1):149–166PubMedCrossRefGoogle Scholar
  70. Perou CM et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16):9212–9217PubMedCrossRefGoogle Scholar
  71. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  72. Radmacher MD, McShane LM, Simon R (2002) A paradigm for class prediction using gene expression profiles. J Comput Biol 9(3):505–511PubMedCrossRefGoogle Scholar
  73. Reichling T et al (2005) Transcriptional profiles of intestinal tumors in Apc(Min) mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors. Cancer Res 65(1):166–176PubMedGoogle Scholar
  74. Reya T et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414PubMedCrossRefGoogle Scholar
  75. Roberts CJ et al (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287(5454):873–880PubMedCrossRefGoogle Scholar
  76. Shen MM and Abate – Shen C (2010) Molecular Genetics for Prostate Cancer: new prospects for old challanges. Genes Dev 24(18):1967–2000PubMedCrossRefGoogle Scholar
  77. Shibata MA et al (1996) Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations. Cancer Res 56(21):4894–4903PubMedGoogle Scholar
  78. Shoushtari AN, Michalowska AM, Green JE (2006) Comparing genetically engineered mouse mammary cancer models with human breast cancer by expression profiling. Breast Dis 28:39–51Google Scholar
  79. Simon R (2003) Using DNA microarrays for diagnostic and prognostic prediction. Expert Rev Mol Diagn 3(5):587–595PubMedCrossRefGoogle Scholar
  80. Simon R (2010) Clinical trials for predictive medicine: new challenges and paradigms. Clin Trials 7(5):516–524PubMedCrossRefGoogle Scholar
  81. Sodir NM et al (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66(17):8430–8438PubMedCrossRefGoogle Scholar
  82. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874PubMedCrossRefGoogle Scholar
  83. Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423PubMedCrossRefGoogle Scholar
  84. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445PubMedCrossRefGoogle Scholar
  85. Sun Q et al (2006) Generation and characterization of a transgenic mouse model for pancreatic cancer. World J Gastroenterol 12(17):2785–2788PubMedGoogle Scholar
  86. Sweet-Cordero A et al (2005) An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37(1):48–55PubMedGoogle Scholar
  87. Sweet-Cordero A et al (2006) Comparison of gene expression and DNA copy number changes in a murine model of lung cancer. Genes Chromosomes Cancer 45(4):338–348PubMedCrossRefGoogle Scholar
  88. Tamayo P et al (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96(6):2907–2912PubMedCrossRefGoogle Scholar
  89. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121PubMedCrossRefGoogle Scholar
  90. Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108(2):135–144PubMedCrossRefGoogle Scholar
  91. van Lohuizen M et al (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65(5):737–752PubMedCrossRefGoogle Scholar
  92. Ventura A et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128):661–665PubMedCrossRefGoogle Scholar
  93. Vogelstein B et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532PubMedCrossRefGoogle Scholar
  94. Wakamatsu N et al (2007) Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol 35(1):75–80PubMedCrossRefGoogle Scholar
  95. Wright GW, Simon RM (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19(18):2448–2455PubMedCrossRefGoogle Scholar
  96. Xue W et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Min Zhu
    • 1
  • Aleksandra M. Michalowski
    • 1
  • Jeffrey E. Green
    • 2
  1. 1.Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and GeneticsCenter for Cancer Research, National Cancer InstituteBethesdaUSA
  2. 2.Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and GeneticsCenter for Cancer Research, National Cancer InstituteBethesdaUSA

Personalised recommendations