Skip to main content

Expression Profiling of Mouse Models of Human Cancer: Model Categorization and Guidance for Preclinical Testing

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research

Abstract

Recent advances in the use of gene expression microarray technologies have been invaluable in deciphering molecular subtypes of human cancers as a first step toward “personalized medicine.” Similarly, high-throughput genomic approaches have revealed mechanisms of oncogenesis in genetically engineered mouse (GEM) cancer models, how cancer evolves, and in what ways these models recapitulate molecular features of human cancers. Sophisticated analyses and cross-species comparisons provide important ways to identify potentially novel therapeutic targets. This chapter reviews the recent progress in the application of gene expression profiling to GEM models representing a variety of human cancers, including breast, prostate, lung, liver, and colon cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre AJ et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17(24):3112–3126

    Article  PubMed  CAS  Google Scholar 

  • Auer H, Newsom DL, Kornacker K (2009) Expression profiling using affymetrix GeneChip microarrays. Methods Mol Biol 509:35–46

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or C, Czosnek H, Koltai H (2007) Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends Genet 23(4):200–207

    Article  PubMed  CAS  Google Scholar 

  • Benito M et al (2004) Adjustment of systematic microarray data biases. Bioinformatics 20(1):105–114

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57(1):289–300

    Google Scholar 

  • Bilitewski U (2009) DNA microarrays: an introduction to the technology. Methods Mol Biol 509:1–14

    Article  PubMed  CAS  Google Scholar 

  • Boivin GP et al (2003) Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124(3):762–777

    Article  PubMed  Google Scholar 

  • Buckley BA (2007) Comparative environmental genomics in non-model species: using heterologous hybridization to DNA-based microarrays. J Exp Biol 210(Pt 9):1602–1606

    Article  PubMed  CAS  Google Scholar 

  • Calvo A et al (2002) Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res 62(18):5325–5335

    PubMed  CAS  Google Scholar 

  • American Cancer Society (2007) Cancer facts and figures. American Cancer Society, Atlanta

    Google Scholar 

  • Cardiff RD et al (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19(8):968–988

    Article  PubMed  CAS  Google Scholar 

  • Christophorou MA et al (2005) Temporal dissection of p53 function in vitro and in vivo. Nat Genet 37(7):718–726

    Article  PubMed  CAS  Google Scholar 

  • Chu S et al (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389):699–705

    Article  PubMed  CAS  Google Scholar 

  • Coulouarn C et al (2006) Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology 44(4):1003–1011

    Article  PubMed  CAS  Google Scholar 

  • D’Cruz CM et al (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7(2):235–239

    Article  PubMed  Google Scholar 

  • Deeb KK et al (2007) Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res 67(17):8065–8080

    Article  PubMed  CAS  Google Scholar 

  • Desai KV et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972

    Article  PubMed  CAS  Google Scholar 

  • Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99(2):147–157

    Article  PubMed  Google Scholar 

  • Eisen MB et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Ekins R, Chu FW (1999) Microarrays: their origins and applications. Trends Biotechnol 17(6):217–218

    Article  PubMed  CAS  Google Scholar 

  • Ellwood-Yen K et al (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3):223–238

    Article  PubMed  CAS  Google Scholar 

  • Ewald D et al (1996) Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273(5280):1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Faivre J et al (1998) Survival of patients with primary liver cancer, pancreatic cancer and biliary tract cancer in Europe. Eur J Cancer 34(14):2184–2190

    Article  PubMed  CAS  Google Scholar 

  • Feng J et al (2007) Gene expression analysis of pancreatic cystic neoplasm in SV40Tag transgenic mice model. World J Gastroenterol 13(15):2218–2222

    PubMed  CAS  Google Scholar 

  • Fontaniere S et al (2006) Gene expression profiling in insulinomas of Men1 beta-cell mutant mice reveals early genetic and epigenetic events involved in pancreatic beta-cell tumorigenesis. Endocr Relat Cancer 13(4):1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Gharaibeh RZ, Fodor AA, Gibas CJ (2007) Software note: using probe secondary structure information to enhance Affymetrix GeneChip background estimates. Comput Biol Chem 31(2):92–98

    Article  PubMed  CAS  Google Scholar 

  • Gibbons DL et al (2009) Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma. PLoS One 4(4):e5401

    Article  PubMed  Google Scholar 

  • Gingrich JR et al (1996) Metastatic prostate cancer in a transgenic mouse. Cancer Res 56(18): 4096–4102

    PubMed  CAS  Google Scholar 

  • Glinsky GV et al (2003) Microarray analysis of xenograft-derived cancer cell lines representing multiple experimental models of human prostate cancer. Mol Carcinog 37(4):209–221

    Article  PubMed  CAS  Google Scholar 

  • Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115(6):1503–1521

    Article  PubMed  CAS  Google Scholar 

  • Golub TR et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  PubMed  CAS  Google Scholar 

  • Granjeaud S, Bertucci F, Jordan BR (1999) Expression profiling: DNA arrays in many guises. Bioessays 21(9):781–790

    Article  PubMed  CAS  Google Scholar 

  • Gray NS et al (1998) Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281(5376):533–538

    Article  PubMed  CAS  Google Scholar 

  • Greenlee RT et al (2001) Cancer statistics, 2001. CA Cancer J Clin 51(1):15–36

    Article  PubMed  CAS  Google Scholar 

  • Gunther EJ et al (2002) A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 16(3):283–292

    Article  PubMed  CAS  Google Scholar 

  • Guo Z et al (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 22(24):5456–5465

    Article  PubMed  CAS  Google Scholar 

  • He WW et al (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43(1):69–77

    Article  PubMed  CAS  Google Scholar 

  • Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153

    Article  PubMed  CAS  Google Scholar 

  • Hennighausen L et al (1995) Conditional gene expression in secretory tissues and skin of transgenic mice using the MMTV-LTR and the tetracycline responsive system. J Cell Biochem 59(4):463–472

    Article  PubMed  CAS  Google Scholar 

  • Herschkowitz JI et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76

    Article  PubMed  Google Scholar 

  • Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18(12):1585–1592

    Article  PubMed  CAS  Google Scholar 

  • Hughes TR et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126

    Article  PubMed  CAS  Google Scholar 

  • Hughes TR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4):342–347

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  • Jain N et al (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 19(15):1945–1951

    Article  PubMed  CAS  Google Scholar 

  • Jaluria P et al (2007) A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 6:4

    Article  PubMed  Google Scholar 

  • Johnson L et al (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410(6832):1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen M et al (2007) Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res 5(11):1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Koliopanos A et al (2008) Molecular aspects of carcinogenesis in pancreatic cancer. Hepatobiliary Pancreat Dis Int 7(4):345–356

    PubMed  CAS  Google Scholar 

  • Landis SH et al (1999) Cancer statistics, 1999. CA Cancer J Clin 49(1):8–31, 1

    Article  PubMed  CAS  Google Scholar 

  • Leclerc D et al (2004) ApcMin/+ mouse model of colon cancer: gene expression profiling in tumors. J Cell Biochem 93(6):1242–1254

    Article  PubMed  CAS  Google Scholar 

  • Lee JS et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36(12):1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Grisham JW, Thorgeirsson SS (2005) Comparative functional genomics for identifying models of human cancer. Carcinogenesis 26(6):1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Lindvall C et al (2006) The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem 281(46):35081–35087

    Article  PubMed  CAS  Google Scholar 

  • Linnerth NM, Sirbovan K, Moorehead RA (2005) Use of a transgenic mouse model to identify markers of human lung tumors. Int J Cancer 114(6):977–982

    Article  PubMed  CAS  Google Scholar 

  • Luo J et al (2010) A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J 10(4):278–291

    Article  PubMed  CAS  Google Scholar 

  • Maroulakou IG et al (1994) Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci USA 91(23):11236–11240

    Article  PubMed  CAS  Google Scholar 

  • Martinez C et al (2005) Expression profiling of murine intestinal adenomas reveals early deregulation of multiple matrix metalloproteinase (Mmp) genes. J Pathol 206(1):100–110

    Article  PubMed  CAS  Google Scholar 

  • Marton MJ et al (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4(11):1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen R, Berns A (2005) Mouse models for human lung cancer. Genes Dev 19(6):643–664

    Article  PubMed  CAS  Google Scholar 

  • Moody SE et al (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2(6):451–461

    Article  PubMed  CAS  Google Scholar 

  • Moorehead RA et al (2003) Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 22(6):853–857

    Article  PubMed  CAS  Google Scholar 

  • Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324

    Article  PubMed  CAS  Google Scholar 

  • Naef F, Magnasco MO (2003) Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays. Phys Rev E Stat Nonlin Soft Matter Phys 68(1 Pt 1):011906

    Article  PubMed  Google Scholar 

  • Nandan MO, Yang VW (2010) Genetic and chemical models of colorectal cancer in mice. Curr Colorectal Cancer Rep 6(2):51–59

    Article  PubMed  Google Scholar 

  • Nemeth J et al (2009) S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology 50(4):1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Oving IM, Clevers HC (2002) Molecular causes of colon cancer. Eur J Clin Invest 32(6):448–457

    Article  PubMed  CAS  Google Scholar 

  • Paoni NF et al (2003) Transcriptional profiling of the transition from normal intestinal epithelia to adenomas and carcinomas in the APCMin/+ mouse. Physiol Genomics 15(3):228–235

    PubMed  CAS  Google Scholar 

  • Peeters JK, Van der Spek PJ (2005) Growing applications and advancements in microarray technology and analysis tools. Cell Biochem Biophys 43(1):149–166

    Article  PubMed  CAS  Google Scholar 

  • Perou CM et al (1999) Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 96(16):9212–9217

    Article  PubMed  CAS  Google Scholar 

  • Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  • Radmacher MD, McShane LM, Simon R (2002) A paradigm for class prediction using gene expression profiles. J Comput Biol 9(3):505–511

    Article  PubMed  CAS  Google Scholar 

  • Reichling T et al (2005) Transcriptional profiles of intestinal tumors in Apc(Min) mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors. Cancer Res 65(1):166–176

    PubMed  CAS  Google Scholar 

  • Reya T et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    Article  PubMed  CAS  Google Scholar 

  • Roberts CJ et al (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287(5454):873–880

    Article  PubMed  CAS  Google Scholar 

  • Shen MM and Abate – Shen C (2010) Molecular Genetics for Prostate Cancer: new prospects for old challanges. Genes Dev 24(18):1967–2000

    Article  PubMed  CAS  Google Scholar 

  • Shibata MA et al (1996) Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations. Cancer Res 56(21):4894–4903

    PubMed  CAS  Google Scholar 

  • Shoushtari AN, Michalowska AM, Green JE (2006) Comparing genetically engineered mouse mammary cancer models with human breast cancer by expression profiling. Breast Dis 28:39–51

    Google Scholar 

  • Simon R (2003) Using DNA microarrays for diagnostic and prognostic prediction. Expert Rev Mol Diagn 3(5):587–595

    Article  PubMed  CAS  Google Scholar 

  • Simon R (2010) Clinical trials for predictive medicine: new challenges and paradigms. Clin Trials 7(5):516–524

    Article  PubMed  Google Scholar 

  • Sodir NM et al (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66(17):8430–8438

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Sun Q et al (2006) Generation and characterization of a transgenic mouse model for pancreatic cancer. World J Gastroenterol 12(17):2785–2788

    PubMed  CAS  Google Scholar 

  • Sweet-Cordero A et al (2005) An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37(1):48–55

    PubMed  CAS  Google Scholar 

  • Sweet-Cordero A et al (2006) Comparison of gene expression and DNA copy number changes in a murine model of lung cancer. Genes Chromosomes Cancer 45(4):338–348

    Article  PubMed  CAS  Google Scholar 

  • Tamayo P et al (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96(6):2907–2912

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108(2):135–144

    Article  PubMed  Google Scholar 

  • van Lohuizen M et al (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65(5):737–752

    Article  PubMed  Google Scholar 

  • Ventura A et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445(7128):661–665

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu N et al (2007) Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol 35(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Wright GW, Simon RM (2003) A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19(18):2448–2455

    Article  PubMed  CAS  Google Scholar 

  • Xue W et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, Center for Cancer Research, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhu, M., Michalowski, A.M., Green, J.E. (2012). Expression Profiling of Mouse Models of Human Cancer: Model Categorization and Guidance for Preclinical Testing. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_10

Download citation

Publish with us

Policies and ethics