Advertisement

Bayesian Approaches: Nonparametric Bayesian Analysis of Gene Expression Data

  • Sonia Jain
Chapter
Part of the Applied Bioinformatics and Biostatistics in Cancer Research book series (ABB)

Keywords

Markov Chain Acute Myeloid Leukemia Acute Lymphoblastic Leukemia Mixture Model Bayesian Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2:1152–1174.CrossRefGoogle Scholar
  2. Beaumont, M. and Rannala, B. (2004). The Bayesian revolution in genetics. Nature Reviews, 5:251–261.PubMedGoogle Scholar
  3. Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Annals of Statistics, 1:353–355.CrossRefGoogle Scholar
  4. Do, K.-A., Müller, P., and Vannucci, M. E. (2006). Bayesian Inference for Gene Expression and Proteomics. Cambridge University Press.Google Scholar
  5. Dudoit, S., Fridlyand, J., and Speed, T. P. (2002a). Comparison of discrimination methods for the classification of tumours using gene expression data. Journal of the American Statistical Association, 97:77–87.CrossRefGoogle Scholar
  6. Dudoit, S., Yang, Y. H., Speed, T. P., and Callow, M. J. (2002b). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12:111–139.Google Scholar
  7. Eisen, M. B., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science, USA, 95:14863–14868.CrossRefGoogle Scholar
  8. Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distributions. In Rizvi, H. and Rustagi, J., editors, Recent Advances in Statistics, pp. 287–303. Academic Press.Google Scholar
  9. Garrett, E. and Parmigiani, G. (2003). POE: statistical methods for qualitative analysis of gene expression. In Parmigiani, G., Garrett, E. S., Irizarry, R. A., and Zeger, S. L., editors, The Analysis of Gene Expression Data: Methods and Software, pp. 362–387. Springer.Google Scholar
  10. Garrett-Mayer, E. and Scharpf, R. (2006). Models for probability of under- and overexpression: the POE scale. In Do, K.-A., Müller, P., and Vannucci, M., editors, Bayesian Inference for Gene Expression and Proteomics, pp. 137–154. Cambridge University Press.Google Scholar
  11. Gelfand, A. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85:398–409.CrossRefGoogle Scholar
  12. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741.CrossRefGoogle Scholar
  13. Gilks, W., Richardson, S., and Spiegelhalter, D. J., editors (1996). Markov Chain Monte Carlo in Practice. Chapman and Hall.Google Scholar
  14. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.and Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531–537.PubMedCrossRefGoogle Scholar
  15. Griffiths, A. J. F., Miller, J. H., Suzuki, T., D., Lewontin, R. C., and Gelbart, W. M. (1996). An Introduction to Genetic Analysis. W. H. Freeman and Company, 6th edition.Google Scholar
  16. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109.CrossRefGoogle Scholar
  17. Jain, S. (2002). Split-Merge Techniques for Bayesian Mixture Models. unpublished Ph.D. dissertation at University of Toronto.Google Scholar
  18. Jain, S. and Neal, R. M. (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics, 13:158–182.CrossRefGoogle Scholar
  19. Jain, S. and Neal, R. M. (2007). Splitting and merging components of a nonconjugate Dirichlet process mixture model (with discussion). Bayesian Analysis, 2:445–472.CrossRefGoogle Scholar
  20. Kendziorski, C. M., Newton, M. A., Lan, H., and Gould, M. N. (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine, 22:3899–3914.PubMedCrossRefGoogle Scholar
  21. MacEachern, S. N. and Müller, P. (1998). Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics, 7:223–238.CrossRefGoogle Scholar
  22. Medvedovic, M. and Sivaganesan, S. (2002). Bayesian infinite mixture model-based clustering of gene expression profiles. Bioinformatics, 18:1194–1206.PubMedCrossRefGoogle Scholar
  23. Medvedovic, M., Yeung, K. Y., and Bumgarner, R. E. (2004). Bayesian mixture model based clustering of replicated microarray data. Bioinformatics, 20:1222–1232.PubMedCrossRefGoogle Scholar
  24. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092.CrossRefGoogle Scholar
  25. Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265.CrossRefGoogle Scholar
  26. Newton, M. A. and Kendziorski, C. (2003). Parametric empirical Bayes methods for microarrays. In Parmigiani, G., Garrett, E. S., Irizarry, R. A., and Zeger, S. L., editors, The Analysis of Gene Expression Data: Methods and Software, pp. 254–271. Springer.Google Scholar
  27. Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and Tsui, K. W. (2001). On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8:37–52.PubMedCrossRefGoogle Scholar
  28. Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture model. Biostatistics, 5:155–176.PubMedCrossRefGoogle Scholar
  29. Newton, M. A., Wang, P., and Kendziorski, C. (2006). Hierarchical mixture models for expression profiles. In Do, K.-A., Müller, P., and Vannucci, M., editors, Bayesian Inference for Gene Expression and Proteomics, pp. 40–52. Cambridge University Press.Google Scholar
  30. Parmigiani, G., Garrett, E. S., Anbazhagan, R., and Gabrielson, E. (2002). A statistical framework for expression-based molecular classification in cancer. Journal of the Royal Statistical Society, Series B, 64:717–736.CrossRefGoogle Scholar
  31. Schena, M. (1999). DNA Microarrays: A Practical Approach. Oxford University Press.Google Scholar
  32. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22:1701–1762.CrossRefGoogle Scholar
  33. West, M., Müller, P., and Escobar, M. D. (1994). Hierarchical priors and mixture models, with application in regression and density estimation. In Freeman, P. R. and Smith, A. F. M., editors, Aspects of Uncertainty, pp. 363–386. John Wiley & Sons.Google Scholar
  34. Yang, Y. H., Buckley, M. J., Dudoit, S., and Speed, T. P. (2002). Comparison of methods for image analysis on cDNA microarray data. Journal of Computational and Graphical Statistics, 11:108–136.CrossRefGoogle Scholar
  35. Yeung, K. Y., Medvedovic, M., and Bumgarner, R. E. (2003). Clustering gene-expression data with repeated measurements. Genome Biology, 4:R34 (Epub).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Biostatistics and BioinformaticsUniversity of CaliforniaLa JollaUSA

Personalised recommendations