Tree-Based Methods

  • Adele Cutler
  • D. Richard Cutler
  • John R. Stevens
Part of the Applied Bioinformatics and Biostatistics in Cancer Research book series (ABB)


Random Forest Linear Discriminant Analysis Regression Tree Transitional Cell Carcinoma Terminal Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, S., Diaz-Uriarte, R., Osorio, A., Barroso, A., Melchor, L., Paz, M. F., Honrado, E., Rodriguez, R., Urioste, M., Valle, L., Diez, O., Cigudosa, J. C., Dopazo, J., Esteller, M., and Benitez, J. (2005). A predictor based on the somatic genomic changes of the brca1/brca2 breast cancer tumors identifies the non-brca1/brca2 tumors with brca1 promoter hypermethylation. Clinical Cancer Research, 11 (3):1146–1153.PubMedGoogle Scholar
  2. Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2):123–140.Google Scholar
  3. Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.CrossRefGoogle Scholar
  4. Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression Trees. Wadsworth, Boca Raton, FL.Google Scholar
  5. Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., and Eerdewegh, P. V. (2005). Identifying snps predictive of phenotype using random forests. Genetic Epidemiology, 28(2):171–182.PubMedCrossRefGoogle Scholar
  6. Cutler, A. and Stevens, J. R. (2006). Random forests for microarrays. In Kimmel, A. and Oliver, B., editors, DNA Microarrays, Part B: Databases and Statistics, Volume 411 (Methods in Enzymology). Academic Press, San Diego, CA.Google Scholar
  7. Dettling, M. (2004). Bagboosting for tumor classification with gene expression data. Bioinformatics, 20(18):3583–3593.PubMedCrossRefGoogle Scholar
  8. Dettling, M. and Buhlmann, P. (2003). Boosting for tumor classification with gene expression data. Bioinformatics, 19(9):1061–1069.PubMedCrossRefGoogle Scholar
  9. Diaz-Uriarte, R. and Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7(1):3.PubMedCrossRefGoogle Scholar
  10. Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–157.CrossRefGoogle Scholar
  11. Dudoit, S., Fridlyand, J., and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457):77–87.CrossRefGoogle Scholar
  12. Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In International Conference on Machine Learning, pp. 148–156.Google Scholar
  13. Friedman, J. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics, 19(1):1–141.CrossRefGoogle Scholar
  14. Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5):1189–1232.CrossRefGoogle Scholar
  15. Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics and Data Analysis, 38(4):367–378.CrossRefGoogle Scholar
  16. Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion). Annals of Statistics, 28(2):337–407.CrossRefGoogle Scholar
  17. Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York.Google Scholar
  18. Heidema, A. G., Boer, J. M., Nagelkerke, N., Mariman, E. C., van der A, D. L., and Feskens, E. J. (2006). The challenge for genetic epidemiologists: how to analyze large numbers of snps in relation to complex diseases. BMC Genetics, 7(23).Google Scholar
  19. Huang, Y., Li, H., Hu, H., Yan, X., Waterman, M., Huang, H., and Zhou, X.J. (2007). Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics, 23:222–229.CrossRefGoogle Scholar
  20. Lee, J. W., Lee, J. B., Park, M., and Song, S. H. (2005). An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis, 48(4):869–885.CrossRefGoogle Scholar
  21. Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News, 2(3):18–22.Google Scholar
  22. Munro, N. P., Cairns, D. A., Clarke, P., Rogers, M., Stanley, A. J., Barrett, J. H., Harnden, P., Thompson, D., Eardley, I., Banks, R. E., and Knowles, M. A. (2006). Urinary biomarker profiling in transitional cell carcinoma. International Journal of Cancer, 119(11):2642–2650.CrossRefGoogle Scholar
  23. Pang, H., Lin, A., Holford, M., Enerson, B., Lu, B., Lawton, M., Floyd, E., and Zhao, H. (2006). Pathway analysis using random forests classification and regression. Bioinformatics, 22(16):2028–2036.PubMedCrossRefGoogle Scholar
  24. R Development Core Team. (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.Google Scholar
  25. Ridgeway, G. (2007). gbm: Generalized Boosted Regression Models. R package version 1.6-3.Google Scholar
  26. Shi, T., Seligson, D., Belldegrun, A., Palotie, A., and Horvath, S. (2005). Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Modern Pathology, 18:547–557.PubMedCrossRefGoogle Scholar
  27. Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo, P., Renshaw, A., D’Amico, A., Richie, J., Lander, E., Loda, M., Kantoff, P., Golub, T., and Sellers, W. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2):203–209.PubMedCrossRefGoogle Scholar
  28. Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E., and Yang, N. (1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. ii. radical prostatectomy treated patients. Journal of Urology, 16:1076–1083.Google Scholar
  29. Therneau, T. M. and Atkinson., B. (2007). rpart: Recursive Partitioning. R port by Brian Ripley. R package version 3.1–36.Google Scholar
  30. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58:267–288.Google Scholar
  31. Wu, B., Abbot, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., Williams, K., and Zhao, H. (2003). Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics, 19(13):1636–1643.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Adele Cutler
    • 1
  • D. Richard Cutler
    • 1
  • John R. Stevens
    • 1
  1. 1.Department of Mathematics and StatisticsUtah State UniversityLoganUSA

Personalised recommendations