Risk Estimation

  • Ronghui Xu
  • Anthony Gamst
Part of the Applied Bioinformatics and Biostatistics in Cancer Research book series (ABB)


Loss Function Risk Estimation Linear Discriminant Analysis American Statistical Association Parametric Bootstrap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory, pp. 267–281, B.N. Petrov and F. Caski, eds. Akademiai Kiado, Budapest.Google Scholar
  2. Barron, A., Birgé, L., and Massart, P. (1999). Risk bounds for model selection by penalization. Probability Theory and Related Fields, 113:301–413.CrossRefGoogle Scholar
  3. Birman, M. S. and Solomjak, M. Z. (1967). Piecewise polynomial approximations of functions in the class \(w_p^\alpha\). Matematicheskii Sbornik, 73:331–355.Google Scholar
  4. Braga-Neto, U., Hashimoto, R., Dougherty, E. R., and Carroll, R. J. (2004). Is cross-validation better than resubstitution for ranking genes? Bioinformatics, 20:253–258.PubMedCrossRefGoogle Scholar
  5. Braga-Neto, U. M. and Dougherty, E. R. (2004). Is cross-validation valid for small-sample microarray classification? Bioinformatics, 20:374–380.PubMedCrossRefGoogle Scholar
  6. Bregman, L. M. (1967). The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7:200–217.CrossRefGoogle Scholar
  7. Breiman, L. (1992). The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. Journal of the American Statistical Association, 87:735–754.CrossRefGoogle Scholar
  8. Brown, L. D. (1986). Fundamentals of Statistical Exponential Families. IMS Lecture Notes Monograph, Hayward.Google Scholar
  9. Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information – Theoretic Approach, 2nd edn. Springer, New York.Google Scholar
  10. Candès, E. J. (2006). Modern statistical estimation via oracle inequalities. Acta Numerica, 15:257–325.CrossRefGoogle Scholar
  11. Cavanaugh, J. E. and Shumway, R. H. (1997). A bootstrap variant of aic for state-space model selection. Statistica Sinica, 7:473–496.Google Scholar
  12. Claeskens, G. and Hjort, N. L. (2003). The focused information criterion. Journal of the American Statistical Association, 98:900–916.CrossRefGoogle Scholar
  13. Claeskens, G. and Carroll, R. J. (2007). An asymptotic theory for model selection inference in general semiparametric problems. Biometrika, 94:249–265.CrossRefGoogle Scholar
  14. Cox, D. (1975). Partial likelihood. Biometrika, 62:269–276.CrossRefGoogle Scholar
  15. DeVore, R. A. (1998). Nonlinear approximation. Acta Numerica, 7:51–150.CrossRefGoogle Scholar
  16. Diggle, P., Heagerty, P., Liang, K. Y., and Zeger, S. (2002). Analysis of Longitudinal Data. Oxford University Press, New York.Google Scholar
  17. Donohue, M., Xu, R., Gamst, A., Vaida, F., and Harrington, D. P. (2007). Model selection under the proportional hazards mixed-effects model. Proceedings of the 2007 Joint Statistical Meetings, CD-ROM.Google Scholar
  18. Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM.Google Scholar
  19. Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the American Statistical Association, 78:316–331.CrossRefGoogle Scholar
  20. Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association, 81:461–470.CrossRefGoogle Scholar
  21. Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. Journal of the American Statistical Association, 99:619–642.CrossRefGoogle Scholar
  22. Fan, J. and Wong, W. H. (2000). Discussion of ‘On profile likelihood’, in Murphy, S. A. and van der Vaart, A. W., eds. Journal of the American Statistical Association, 95:468–471.CrossRefGoogle Scholar
  23. Feng, Z., Prentice, R., and Srivastava, S. (2004). Research issues and strategies for genomic and proteomic biomarker discovery and validation: a statistical perspective. Pharmacogenomics, 5:709–719.PubMedCrossRefGoogle Scholar
  24. Fourdrinier, D., Strawderman, W. E., and Wells, M. T. (1998). On the construction of Bayes minimax estimators. Annals of Statistics, 26:660–671.CrossRefGoogle Scholar
  25. Hajek, J., Sidak, Z., and Sen, P. K. (1999). The Theory of Rank Tests, 2nd edn. Academic Press, New York.Google Scholar
  26. Hand, D. J. (2006). Classifier technology and the illusion of progress. Statistical Science, 21:1–14.CrossRefGoogle Scholar
  27. Hastie, T. and Tibshirani, R. (1990). Generalized Linear Models. Chapman & Hall, London.Google Scholar
  28. Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer, New York.Google Scholar
  29. Hjort, N. L. and Claeskens, G. (2003). Frequentist model average estimators. Journal of the American Statistical Association, 98:879–899.CrossRefGoogle Scholar
  30. Hodges, J. S. and Sargent, D. J. (2001). Counting degrees of freedom in hierarchical and other richly parameterized models. Biometrika, 88(2):367–279.CrossRefGoogle Scholar
  31. Johnstone, I. M. (2002). Function estimation and gaussian sequence models.ĩmj/baseb.pdf.
  32. Lu, X., Gamst, A., and Xu, R. (2007). On gene discovery and rediscovery. In Proceedings of the 2007 Joint Statistical Meetings. CD-ROM.Google Scholar
  33. Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15:661–675.CrossRefGoogle Scholar
  34. Mammen, E. and van de Geer, S. (1997). Local adaptive regression splines. Annals of Statistics, 25:387–413.CrossRefGoogle Scholar
  35. Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24:227–234.CrossRefGoogle Scholar
  36. Pan, W. (1999). Bootstrapping likelihood for model selection with small samples. Journal of Computational and Graphical Statistics, 8:687–698.CrossRefGoogle Scholar
  37. Pan, W. (2001). Model selection in estimating equations. Biometrics, 57:120–125.PubMedCrossRefGoogle Scholar
  38. Romano, J. P. (1990). On the behavior of randomization tests without a group invariance assumption. Journal of the American Statistical Association, 85:686–692.CrossRefGoogle Scholar
  39. Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditionally parametric models. Annals of Statistics, 20:1768–1802.CrossRefGoogle Scholar
  40. Shang, J. and Cavanaugh, J. E. (2008). Bootstrap variants of the Akaike information criterion for mixed model selection. Computational Statistics and Data Analysis, 52:2004–2021.CrossRefGoogle Scholar
  41. Shen, X. and Ye, J. (2002). Adaptive model selection. Journal of the American Statistical Association, 97:210–221.CrossRefGoogle Scholar
  42. Shen, X., Huang, H., and Ye, J. (2004). Comment to Efron (2004). Journal of the American Statistical Association, 99:634–637.CrossRefGoogle Scholar
  43. Shibata, R. (1997). Bootstrap estimate of Kullback-Leibler information for model selection. Statistica Sinica, 7:375–394.Google Scholar
  44. Silverman, B. W. (1984). Spline smoothing: The equivalent kernel method. Annals of Statistics, 12:898–916.CrossRefGoogle Scholar
  45. Stein, C. (1973). Estimation of the mean of a multivariate normal distribution. Proceedings of Prague Symposium on Asymptotic Statistics, pp. 345–381.Google Scholar
  46. Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 9:1135–1151.CrossRefGoogle Scholar
  47. Strawderman, W. E. (1971). Proper Bayes minimax estimators of the multivariate normal mean. Annals of Mathematical Statistics, 42:385–388.CrossRefGoogle Scholar
  48. Tukey, J. W. (1961). Curves as parameters and touch estimation. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Google Scholar
  49. Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika, 92:351–370.CrossRefGoogle Scholar
  50. van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York.Google Scholar
  51. Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57:307–333.CrossRefGoogle Scholar
  52. Xu, R. and Li, X. (2003). A comparison of parametric versus permutation methods with applications to general and temporal microarray gene expression data. Bioinformatics, 19:1284–1289.PubMedCrossRefGoogle Scholar
  53. Xu, R., Vaida, F., and Harrington, D. (2008). Using profile likelihood for semiparametric model selection with application to proportional hazards mixed models. Statistica Sinica, in press.Google Scholar
  54. Ye, J. (1998). On meausuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association, 93:120–131.CrossRefGoogle Scholar
  55. Zhang, C. (2004). Comment to Efron (2004). Journal of the American Statistical Association, 99:637–640.CrossRefGoogle Scholar
  56. Zhang, C., Lu, X., and Zhang, X. (2006). Significance of gene ranking for classification of microarray samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3:312–320.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Biostatistics and Bioinformatics, Department of Family and Preventive Medicine and Department of MathematicsUniversity of CaliforniaLa JollaUSA

Personalised recommendations