Multivariate Nonparametric Regression

  • Charles Kooperberg
  • Michael LeBlanc
Part of the Applied Bioinformatics and Biostatistics in Cancer Research book series (ABB)


Hazard Function Regression Tree Generalize Additive Model Multivariate Adaptive Regression Spline Regression Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19:716–723.CrossRefGoogle Scholar
  2. Barlogie, B., Tricot, G., Rasmussen, E., Anaissie, E., van Rhee, F., Zangari, M., Fassas, A., Hollmig, K., Pineda-Roman, M., Shaughnessy, J., Epstein, J., and Crowley, J. (2006). Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies. Blood, 107:2633–2638.PubMedCrossRefGoogle Scholar
  3. Board on health sciences policy. (2002). Cancer and the Environment: Gene–Environment Interaction. Institute of Medicine, National Academy Press, Washington D. C.Google Scholar
  4. de Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York.Google Scholar
  5. Breiman, L. (1996). Bagging predictors. Machine Learning, 24:123–140.Google Scholar
  6. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth, Pacific Grove, California.Google Scholar
  7. Ciampi, A., Thiffault, J., Nakache, J. P., and Asselain, B. (1986). Stratification by stepwise regression, correspondence analysis and recursive partition. Computational Statistics and Data Analysis, 4:185–204.CrossRefGoogle Scholar
  8. Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society B, 34:187–220.Google Scholar
  9. Dai, J. Y., LeBlanc, M., and Kooperberg, C. (2008). Semiparametric estimation exploiting covariate independence in two-phase randomized trials. Biometrics, May 12. [Epub ahead of print].Google Scholar
  10. Davis, R. B. and Anderson, J. R. (1989). Exponential survival trees. Statistics in Medicine, 8:947–961.PubMedCrossRefGoogle Scholar
  11. Dettling, M. and Bühlmann, P. (2002). Supervised clustering of genes. Genome Biology, 3:69.1–69.15.CrossRefGoogle Scholar
  12. Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D. P., Thompson, D., Ballinger, D. G., Struewing, J. P., Morrison, J., Field, H., Luben, R., et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447:1087–1093.PubMedCrossRefGoogle Scholar
  13. Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32:407–499.CrossRefGoogle Scholar
  14. Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with discussion). Statistical Science, 11:89–121.CrossRefGoogle Scholar
  15. Farag, S., Archer, K. K., Mrózek, K., Ruppert, A. S., Carroll, A. J., Vardiman, J. W., Pettenati, J., Baer, M. R., Qumsiyeh, M. B., Koduru, P. R., et al. (2006). Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood, Jul. 1; 108(1):63–73.PubMedCrossRefGoogle Scholar
  16. Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Machine Learning: Proceedings of the Tirteenth International Conference, pp. 148–156. Morgan Kauffman, San Francisco.Google Scholar
  17. Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). The Annals of Statistics, 19:1–141.CrossRefGoogle Scholar
  18. Friedman, J. H. and Fisher, N. I. (1999). Bump-hunting for high dimensional data. Statistics and Computation, 9:123–143.CrossRefGoogle Scholar
  19. Friedman, J. H., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). The Annals of Statistics, 38:337–407.CrossRefGoogle Scholar
  20. Gimotty, P. A., Elder, D. E., Fraker, D. L., Botbyl, J., Sellers, K., Elenitsas, R., Ming, M. E., Schuchter, L., Spitz, F. R., Czerniecki, B. J., and Guerry, D. (2007). Identification of high-risk patients among those diagnosed with thin cutaneous melanomas. Journal of Clinical Oncology, 25:1129–1134.PubMedCrossRefGoogle Scholar
  21. Gordon, L. and Olshen, R. A. (1985). Tree-structured survival analysis. Cancer Treatment Reports, 69:1065–1069.PubMedGoogle Scholar
  22. Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: a Roughness Penalty Approach. Chapman and Hall, London.Google Scholar
  23. Greipp, P. R., San Miguel, J., Durie, B. G., Crowley, J. J., Barlogie, B., Bladé, J., Boccadoro, M., Child, J. A., Avet-Loiseau, H., Kyle, R. A., et al. (2005). International staging system for multiple myeloma. Journal of Clinical Oncology, 23:3412–3420.PubMedCrossRefGoogle Scholar
  24. Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.Google Scholar
  25. Hastie, T., Tibshirani, R., Botstein, D., and Brown, P. (2001). Supervised harvesting of regression trees. Genome Biology, 2:3.1–3.12.CrossRefGoogle Scholar
  26. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12:55–67.CrossRefGoogle Scholar
  27. Kooperberg, C., Stone, C. J., and Truong, Y. K. (1995). Hazard regression. Journal of the American Statistical Association, 90:78–94.CrossRefGoogle Scholar
  28. Kooperberg, C., Bose, S., and Stone, C. J. (1997). Polychotomous regression. Journal of the American Statistical Association, 92:117–127.CrossRefGoogle Scholar
  29. LeBlanc, M. and Crowley, J. (1993). Survival trees by goodness of split. Journal of the American Statistical Association, 88:457–467.CrossRefGoogle Scholar
  30. LeBlanc, M., Moon, J., and Crowley, J. (2005). Adaptive risk group refinement. Biometrics, 61:370–378.PubMedCrossRefGoogle Scholar
  31. LeBlanc, M., Moon, J., and Kooperberg, C. (2006). Extreme regression. Biostatistics, 13:106–122.Google Scholar
  32. Loader, C. (1999). Local Regression and Likelihood. Springer-Verlag, New York.Google Scholar
  33. London, W. B., Castleberry, R. P., Matthay, K. K., Look, A. T., Seeger, R. C., Shimada, H., Thorner, P., Broderu, G., Maris, J. M., Reynolds, C. P., and Cohn, S. L. (2005). Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. Journal of Clinical Oncology, 23:6459–6465.PubMedCrossRefGoogle Scholar
  34. Osborne, M. R., Presnell, B., and Turlach, B. A. (2004). On the LASSO and its dual. Journal of Computational and Graphical Statistics, 9:319–337.CrossRefGoogle Scholar
  35. O’Sullivan, F. (1988). Fast computation of fully automated log-density and log-hazard estimators. SIAM Journal on Scientific and Statistical Computing, 9:363–379.CrossRefGoogle Scholar
  36. Park, M. Y. and Hastie, T. (2006). L 1 regularization path models for generalized linear models. Journal of the Royal Statistical Society B, page in press.Google Scholar
  37. Polesel, J., Dal Maso, L., Bagnardi, V., Zucchetto, A., Zambon, A., Levi, F., La Vecchia, C., and Franeschi, S. (2005). Estimating dose-response relationship between ethanol and risk of cancer using regression spline models. International Journal of Cancer, 114:836–841.CrossRefGoogle Scholar
  38. Quantin, C., Abrahamowicz, M., Moreau, T., Bartlett, G., MacKenzie, T., Tazi, M. A., Lalonde, L., and Faivre, J. (1999). Variation over time of the effects of prognostic factors in a population-based study of colon cancer: Comparison of statistical models. American Journal of Epidemiology, 150:1188–1200.PubMedGoogle Scholar
  39. Quinlan, J. R. (1993). C4.5 Programs for Machine Learning. Morgan Kaufman, San Francisco, CA.Google Scholar
  40. Rao, C. R. (1973). Linear Statistical Inference and Its Applications. John Wiley, New York.CrossRefGoogle Scholar
  41. Rosenwald, A., Wright, G., Chan, W., Connors, J., Campo, D., Fisher, R., Gascoyne, R., Muller-Hermelink, H., Smeland, E., Staudt, L., et al. (2002). Molecular diagnosis and clinical outcome prediction in diffuse large B-cell lymphoma. New England Journal of Medicine, 346:1937–1947.PubMedCrossRefGoogle Scholar
  42. Ruczinski, I., Kooperberg, C., and LeBlanc, M. (2003). Logic regression. Journal of Computational and Graphical Statistics, 12:475–511.CrossRefGoogle Scholar
  43. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461–464.CrossRefGoogle Scholar
  44. Segal, M. R. (1988). Regression trees for censored data. Biometrics, 44:35–47.CrossRefGoogle Scholar
  45. Singer, E. (2005). Personalized medicine prompts push to redesign clinical trials. Nature, 452:462.Google Scholar
  46. Smith, P. L. (1982). Curve fitting and modeling with splines using statistical variable selection methods. Technical report, NASA, Langley Research Center, Hampla, Virginia.Google Scholar
  47. Stone, C. J. (1994). The use of polynomial splines and their tensor products in multivariate function estimation (with discussion). The Annals of Statistics, 22:118–184.CrossRefGoogle Scholar
  48. Stone, C. J., Hansen, M. H., Kooperberg, C., and Truong, Y. K. (1997). Polynomial splines and their tensor products in extended linear modeling (with discussion). The Annals of Statistics, 25:1371–1470.CrossRefGoogle Scholar
  49. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B, 58:267–288.Google Scholar
  50. Yeager, M., Orr, N., Hayes, R. B., Jacobs, K. B., Kraft, P., Wacholder, S., Minichiello, M. J., Fearnhead, P., Yu, K., Chatterjee, N., et al. (2007). Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genetics, 39:645–649.PubMedCrossRefGoogle Scholar
  51. Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B, 67:301–320.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Public Health SciencesFred Hutchinson Cancer Research CenterM3-A410 SeattleUSA

Personalised recommendations