Genome-Wide DNA Methylation Analysis in Cancer Research

Part of the Applied Bioinformatics and Biostatistics in Cancer Research book series (ABB)


DNA methylation is a central epigenetic process involved in ­establishing normal cellular gene expression patterns and genome homeostasis. Aberrations in DNA methylation, leading to abnormal gene expression patterns, have now been linked to many human diseases, and are a nearly universal feature of human cancers. Because these DNA methylation changes can be stably transmitted during clonal outgrowth of cancer cells, they can carry the same importance as mutations in the initiation and progression of human cancers. Such somatic DNA methylation changes often occur earlier and more frequently than genome mutations during ­carcinogenesis, and have therefore provided a wealth of targets for translational opportunities in cancer biomarkers for diagnosis and risk stratification. Additionally, since these DNA methylation changes are epigenetic processes that are enzymatically mediated and do not alter the underlying DNA sequence, they can potentially be reversed by pharmacological inhibition of the epigenetic machinery, providing opportunities for cancer therapy. Therefore, understanding the genome-wide patterns of DNA methylation in normal and cancer cells has become of primary interest in cancer research. In this chapter, we will first provide an overview of DNA methylation as an epigenetic process in normal physiology and in carcinogenesis. Then we will describe some of the current and up-coming technologies used in analyzing DNA methylation patterns at a genome-wide level, and consider the strengths and limitations of each of these approaches.


Next Generation Sequencing Bisulfite Sequencing Bisulfite Conversion Methylation Sensitive Restriction Enzyme Bisulfite Genomic Sequencing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27:361–368.PubMedCrossRefGoogle Scholar
  2. Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B, Eisenberger MA, Partin AW, Nelson WG (2005) Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res 11:4037–4043.PubMedCrossRefGoogle Scholar
  3. Bedford MT, van Helden PD (1987) Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res 47:5274–5276.PubMedGoogle Scholar
  4. Bibikova M, Fan JB (2009) GoldenGate assay for DNA methylation profiling. Methods Mol Biol 507:149–163.PubMedCrossRefGoogle Scholar
  5. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, Gunderson KL (2009) Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1:177–200.PubMedCrossRefGoogle Scholar
  6. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213.PubMedCrossRefGoogle Scholar
  7. Bird AP, Southern EM (1978) Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J Mol Biol 118:27–47.PubMedCrossRefGoogle Scholar
  8. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764.PubMedCrossRefGoogle Scholar
  9. Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19:1044–1056.PubMedCrossRefGoogle Scholar
  10. Cadieux B, Ching TT, Vandenberg SR, Costello JF (2006) Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 66:8469–8476.PubMedCrossRefGoogle Scholar
  11. Challita PM, Skelton D, el-Khoueiry A, Yu XJ, Weinberg K, Kohn DB (1995) Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol 69:748–755.PubMedGoogle Scholar
  12. Chapman V, Forrester L, Sanford J, Hastie N, Rossant J (1984) Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307:284–286.PubMedCrossRefGoogle Scholar
  13. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270.PubMedCrossRefGoogle Scholar
  14. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138.PubMedCrossRefGoogle Scholar
  15. Cottrell SE, Distler J, Goodman NS, Mooney SH, Kluth A, Olek A, Schwope I, Tetzner R, Ziebarth H, Berlin K (2004) A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res 32:e10.PubMedCrossRefGoogle Scholar
  16. Cross SH, Charlton JA, Nan X, Bird AP (1994) Purification of CpG islands using a methylated DNA binding column. Nat Genet 6:236–244.PubMedCrossRefGoogle Scholar
  17. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Backdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJ, Durbin R, Tavare S, Beck S (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785.PubMedCrossRefGoogle Scholar
  18. Dupont JM, Tost J, Jammes H, Gut IG (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127.PubMedCrossRefGoogle Scholar
  19. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28:E32.PubMedCrossRefGoogle Scholar
  20. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385.PubMedCrossRefGoogle Scholar
  21. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102:15785–15790.PubMedCrossRefGoogle Scholar
  22. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413.PubMedCrossRefGoogle Scholar
  23. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138.PubMedCrossRefGoogle Scholar
  24. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229.PubMedGoogle Scholar
  25. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153.PubMedCrossRefGoogle Scholar
  26. Feinberg AP, Vogelstein B (1983a) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92.PubMedCrossRefGoogle Scholar
  27. Feinberg AP, Vogelstein B (1983b) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54.PubMedCrossRefGoogle Scholar
  28. Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48:1159–1161.PubMedGoogle Scholar
  29. Feinberg AP, Cui H, Ohlsson R (2002) DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12:389–398.PubMedCrossRefGoogle Scholar
  30. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465.Google Scholar
  31. Frigola J, Ribas M, Risques RA, Peinado MA (2002) Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res 30:e28.PubMedCrossRefGoogle Scholar
  32. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831.PubMedCrossRefGoogle Scholar
  33. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894.PubMedCrossRefGoogle Scholar
  34. Gebhard C, Schwarzfischer L, Pham TH, Andreesen R, Mackensen A, Rehli M (2006a) Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR. Nucleic Acids Res 34:e82.PubMedCrossRefGoogle Scholar
  35. Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, Andreesen R, Rehli M (2006b) Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res 66:6118–6128.PubMedCrossRefGoogle Scholar
  36. Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12:158–164.PubMedCrossRefGoogle Scholar
  37. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228:187–190.PubMedCrossRefGoogle Scholar
  38. Gowher H, Jeltsch A (2001) Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol 309:1201–1208.PubMedCrossRefGoogle Scholar
  39. Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnirke A, Lander ES, Meissner A (2010) Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7:133–136.PubMedCrossRefGoogle Scholar
  40. Hayashizaki Y, Hirotsune S, Okazaki Y, Hatada I, Shibata H, Kawai J, Hirose K, Watanabe S, Fushiki S, Wada S et al (1993) Restriction landmark genomic scanning method and its various applications. Electrophoresis 14:251–258.PubMedCrossRefGoogle Scholar
  41. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826.PubMedCrossRefGoogle Scholar
  42. Hodges E, Smith AD, Kendall J, Xuan Z, Ravi K, Rooks M, Zhang MQ, Ye K, Bhattacharjee A, Brizuela L, McCombie WR, Wigler M, Hannon GJ, Hicks JB (2009) High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 19:1593–1605.PubMedCrossRefGoogle Scholar
  43. Ibrahim AE, Thorne NP, Baird K, Barbosa-Morais NL, Tavare S, Collins VP, Wyllie AH, Arends MJ, Brenton JD (2006) MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res 34:e136.PubMedCrossRefGoogle Scholar
  44. Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18:780–790.PubMedCrossRefGoogle Scholar
  45. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167.PubMedCrossRefGoogle Scholar
  46. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811.PubMedCrossRefGoogle Scholar
  47. Jorgensen HF, Adie K, Chaubert P, Bird AP (2006) Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res 34:e96.PubMedCrossRefGoogle Scholar
  48. Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh LS, Lee SL, Leighton JK, Patel H, Rahman A, Sridhara R, Wang YC, Pazdur R (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608.PubMedCrossRefGoogle Scholar
  49. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C, Ravandi F, Helmer R III, Shen L, Nimer SD, Leavitt R, Raza A, Saba H (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803.PubMedCrossRefGoogle Scholar
  50. Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M, Stasiek E, Figueroa ME, Glass JL, Chen Q, Montagna C, Hatchwell E, Selzer RR, Richmond TA, Green RD, Melnick A, Greally JM (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055.PubMedCrossRefGoogle Scholar
  51. Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19:667–678.PubMedCrossRefGoogle Scholar
  52. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266.PubMedCrossRefGoogle Scholar
  53. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203.PubMedCrossRefGoogle Scholar
  54. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91:11733–11737.PubMedCrossRefGoogle Scholar
  55. Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, Levin B, Juhl H, Arber N, Moinova H, Durkee K, Schmidt K, He Y, Diehl F, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW, Markowitz SD, Vogelstein B (2009) Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol 27:858–863.PubMedCrossRefGoogle Scholar
  56. Liang G, Gonzalgo ML, Salem C, Jones PA (2002) Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction. Methods 27:150–155.PubMedCrossRefGoogle Scholar
  57. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322.PubMedCrossRefGoogle Scholar
  58. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252.PubMedCrossRefGoogle Scholar
  59. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877.PubMedCrossRefGoogle Scholar
  60. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770.PubMedGoogle Scholar
  61. Norris DP, Brockdorff N, Rastan S (1991) Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mamm Genome 1:78–83.PubMedCrossRefGoogle Scholar
  62. Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME, Selzer RR, Richmond TA, Zhang X, Dannenberg L, Green RD, Melnick A, Hatchwell E, Bouhassira EE, Verma A, Suzuki M, Greally JM (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37:3829–3839.PubMedCrossRefGoogle Scholar
  63. Onyango P, Jiang S, Uejima H, Shamblott MJ, Gearhart JD, Cui H, Feinberg AP (2002) Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci U S A 99:10599–10604.PubMedCrossRefGoogle Scholar
  64. Ordway JM, Bedell JA, Citek RW, Nunberg A, Garrido A, Kendall R, Stevens JR, Cao D, Doerge RW, Korshunova Y, Holemon H, McPherson JD, Lakey N, Leon J, Martienssen RA, Jeddeloh JA (2006) Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 27:2409–2423.PubMedCrossRefGoogle Scholar
  65. Plass C, Shibata H, Kalcheva I, Mullins L, Kotelevtseva N, Mullins J, Kato R, Sasaki H, Hirotsune S, Okazaki Y, Held WA, Hayashizaki Y, Chapman VM (1996) Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat Genet 14:106–109.PubMedCrossRefGoogle Scholar
  66. Pollack Y, Stein R, Razin A, Cedar H (1980) Methylation of foreign DNA sequences in eukaryotic cells. Proc Natl Acad Sci U S A 77:6463–6467.PubMedCrossRefGoogle Scholar
  67. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242.PubMedCrossRefGoogle Scholar
  68. Rauch T, Pfeifer GP (2005) Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest 85:1172–1180.PubMedCrossRefGoogle Scholar
  69. Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, Riggs AD, Pfeifer GP (2008) High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A 105:252–257.PubMedCrossRefGoogle Scholar
  70. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610.PubMedCrossRefGoogle Scholar
  71. Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, Morales C, Moreno V, Esteller M, Capella G, Ribas M, Peinado MA (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66:8462–9468.PubMedCrossRefGoogle Scholar
  72. Serre D, Lee BH, Ting AH (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38:391–399.PubMedCrossRefGoogle Scholar
  73. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912.PubMedCrossRefGoogle Scholar
  74. Shinar D, Yoffe O, Shani M, Yaffe D (1989) Regulated expression of muscle-specific genes introduced into mouse embryonal stem cells: inverse correlation with DNA methylation. Differentiation 41:116–126.PubMedCrossRefGoogle Scholar
  75. Sidransky D (2002) Emerging molecular markers of cancer. Nat Rev Cancer 2:210–219.PubMedCrossRefGoogle Scholar
  76. Siegfried Z, Cedar H (1997) DNA methylation: a molecular lock. Curr Biol 7:R305–307.PubMedCrossRefGoogle Scholar
  77. Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H (1999) DNA methylation represses transcription in vivo. Nat Genet 22:203–206.PubMedCrossRefGoogle Scholar
  78. Singer J, Roberts-Ems J, Riggs AD (1979) Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II. Science 203:1019–1021.PubMedCrossRefGoogle Scholar
  79. Singer-Sam J, Grant M, LeBon JM, Okuyama K, Chapman V, Monk M, Riggs AD (1990a) Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol 10:4987–4989.PubMedGoogle Scholar
  80. Singer-Sam J, LeBon JM, Tanguay RL, Riggs AD (1990b) A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res 18:687.PubMedCrossRefGoogle Scholar
  81. Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102:3336–3341.PubMedCrossRefGoogle Scholar
  82. Suzuki K, Suzuki I, Leodolter A, Alonso S, Horiuchi S, Yamashita K, Perucho M (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9:199–207.PubMedCrossRefGoogle Scholar
  83. Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ, Xu D, Caldwell CW, Shi H (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67:8511–8518.PubMedCrossRefGoogle Scholar
  84. The Cancer Genome Atlas Project (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068.CrossRefGoogle Scholar
  85. Thomassin H, Kress C, Grange T (2004) MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res 32:e168.PubMedCrossRefGoogle Scholar
  86. Tilghman SM (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96:185–193.PubMedCrossRefGoogle Scholar
  87. Tolberg ME, Funderburk SJ, Klisak I, Smith SS (1987) Structural organization and DNA methylation patterning within the mouse L1 family. J Biol Chem 262:11167–11175.PubMedGoogle Scholar
  88. Wang RY, Gehrke CW, Ehrlich M (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8:4777–4790.PubMedCrossRefGoogle Scholar
  89. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466.PubMedCrossRefGoogle Scholar
  90. Yan PS, Potter D, Deatherage DE, Huang TH, Lin S (2009) Differential methylation hybridization: profiling DNA methylation with a high-density CpG island microarray. Methods Mol Biol 507:89–106.PubMedCrossRefGoogle Scholar
  91. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986.PubMedCrossRefGoogle Scholar
  92. Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG (2006) Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res 34:e19.PubMedCrossRefGoogle Scholar
  93. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Srinivasan Yegnasubramanian
    • 1
  • William G. Nelson
  1. 1.Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations