The Incretin Modulators – Incretin Mimetics (GLP-1 Receptor Agonists) and Incretin Enhancers (DPP-4 Inhibitors)

  • Michael A. Nauck
  • Wolfgang E. Schmidt
  • Juris J. Meier

Keywords: Incretin, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), entero-insular axis, exenatide, liraglutide, vildagliptin, sitagliptin, saxagliptin, DPP-4.


Glycemic Control Insulin Glargine Gastric Inhibitory Polypeptide Incretin Hormone Incretin Mimetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.Google Scholar
  2. 2.
    Gromada J, Dissing S, Kofod H, Frokjaer-Jensen J. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium channels and cytosolic calcium levels in β TC3 cells and rat pancreatic beta cells. Diabetologia 1995;38:1025–1032.PubMedGoogle Scholar
  3. 3.
    Creutzfeldt W. The incretin concept today. Diabetologia 1979;16:75–85.PubMedGoogle Scholar
  4. 4.
    Creutzfeldt W, Nauck M. Gut hormones and diabetes mellitus. Diabetes/Metab Rev 1992;8:149–177.Google Scholar
  5. 5.
    Brown JC, Pederson RA. GI hormones and insulin secretion. Endocrinology. Proceedings of the Vth International Congress Endocrinol 1976;2:568–570.Google Scholar
  6. 6.
    Brown JC, Dahl M, McIntosh CHS, Otte SC, Pedeson RA. Actions of GIP. Peptides 1981;2:241–245.PubMedGoogle Scholar
  7. 7.
    Brown JC. Gastric Inhibitory Polypeptide. Heidelberg: Springer-Verlag; 1982.Google Scholar
  8. 8.
    Pederson RA, Brown JC. The insulinotropic action of gastric inhibitory polypeptide in the perfused rat pancreas. Endocrinology 1976;99:780–785.PubMedGoogle Scholar
  9. 9.
    Dupré J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973;37:826–828.PubMedGoogle Scholar
  10. 10.
    Krarup T, Saurbrey N, Moody AJ, Kühl C, Madsbad S. Effect of porcine gastric inhibitory polypeptide on β-cell function in Type 1 and Type II diabetes mellitus. Metabolism 1988;36:677–682.Google Scholar
  11. 11.
    Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993;91:301–307.PubMedGoogle Scholar
  12. 12.
    Meier JJ, Hücking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 2001;50:2497–2504.PubMedGoogle Scholar
  13. 13.
    Vilsbøll T, Krarup T, Madsbad S, Holst JJ. Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 2002;45:1111–1119.PubMedGoogle Scholar
  14. 14.
    Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC. Exon duplication and divergence in the human preproglucagon gene. Nature 1983;304:368–371.PubMedGoogle Scholar
  15. 15.
    Holst JJ, Ørskov C, Vagn-Nielsen O, Schwartz TW. Truncated glucagon-like peptide 1, an insulin-releasing hormone from the distal gut. FEBS Letters 1987;211:169–174.PubMedGoogle Scholar
  16. 16.
    Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 1987;79:616–619.PubMedGoogle Scholar
  17. 17.
    Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 [7–36]: a physiological incretin in man. Lancet 1987;2:1300–1304.PubMedGoogle Scholar
  18. 18.
    Nauck MA, Bartels E, Ørskov C, Ebert R, Creutzfeldt W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7–36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993;76:912–917.PubMedGoogle Scholar
  19. 19.
    Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF. Insulinotropic action of glucagon-like peptide 1 (7–37) in diabetic and non-diabetic subjects. Diabetes Care 1992;15:270–276.PubMedGoogle Scholar
  20. 20.
    Gutniak MK, Holst JJ, Ørskov C, Åhren B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7–36) amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992;326:1316–1322.PubMedGoogle Scholar
  21. 21.
    Elrick H, Stimmler L, Hlad CJ, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964;24:1076–1082.PubMedGoogle Scholar
  22. 22.
    McIntyre N, Holdsworth CD, Turner DS. Intestinal factors in the control of insulin secretion. J Clin Endocrinol 1965;25:1317–1324.Google Scholar
  23. 23.
    Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 1967;46:1954–1962.PubMedGoogle Scholar
  24. 24.
    Brown JC, Dryburgh JR. A gastric inhibitory polypeptide II. The complete amino acid sequence. Can J Biochem 1971;49:867–872.PubMedGoogle Scholar
  25. 25.
    Pederson RA, Schubert HE, Brown JC. Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 1975;24:1050–1056.PubMedGoogle Scholar
  26. 26.
    Buchan AMJ, Polak JM, Capella C, Solcia E, Pearse AGE. Electron immunocytochemical evidence of the K cell localisation of gastric inhibitory polypeptide (GIP) in man. Histochemistry 1978;56:37–44.PubMedGoogle Scholar
  27. 27.
    Bell GI. The glucagon super family: Precursor structure and gene organization. Peptides 1986;7(Suppl. 1):27–36.PubMedGoogle Scholar
  28. 28.
    Eissele R, Göke R, Willemer S, Harthus HP, Vermeer H, Arnold R, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 1992;22:283–291.PubMedGoogle Scholar
  29. 29.
    Ørskov C, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV, Holst JJ. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 1986;119:1467–1475.PubMedGoogle Scholar
  30. 30.
    Ørskov C, Holst JJ, Seier-Poulsen S, Kirkegaard P. Pancreatic and intestinal processing of proglucagon in man. Diabetologia 1987;30:874–881.PubMedGoogle Scholar
  31. 31.
    Blackmore PF, Mojsov S, Exton JH, Habener JF. Absence of insulinotropic glucagon-like peptide-I (7–37) receptors on isolated rat liver hepatocytes. FEBS Lett 1991;283:7–10.PubMedGoogle Scholar
  32. 32.
    Ørskov C, Rabenhøj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide 1 in humans. Diabetes 1994;43:535–539.PubMedGoogle Scholar
  33. 33.
    Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by intestinal regulatory peptides. Endocrinol 1991;128:3175–3182.Google Scholar
  34. 34.
    Mortensen K, Petersen LL, Orskov C. Colocalization of GLP-1 and GIP in human and porcine intestine. Ann N Y Acad Sci 2000;921:469–472.PubMedGoogle Scholar
  35. 35.
    Nauck MA. Glucagon-like peptide 1 (GLP-1): a potent gut hormone with a possible therapeutic perspective. Acta Diabetol 1998;35:117–129.PubMedGoogle Scholar
  36. 36.
    Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001;50:609–613.PubMedGoogle Scholar
  37. 37.
    Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Host JJ. Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type 2-diabetic patients and in healthy subjects. Diabetes 1995;44:1126–1131.PubMedGoogle Scholar
  38. 38.
    Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993;214:829–835.PubMedGoogle Scholar
  39. 39.
    Mentlein R. Dipeptidyl-peptidase IV (CD26) -role in the inactivation of regulatory peptides. Regul Pept 1999;85:9–24.PubMedGoogle Scholar
  40. 40.
    Grandt D, Sieburg B, Sievert J, Schimiczek M, Becker U, Holtmann D. Is GLP-1 (9–36) amide an endogenous antagonist at GLP-1 receptors? (abstract). Digestion 1994;55:302.Google Scholar
  41. 41.
    Knudsen LB, Pridal L. Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 1996;318:429–435.PubMedGoogle Scholar
  42. 42.
    Deacon CF, Plamboeck A, Moller S, Holst JJ. GLP-1-(9–36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol (Endocrinol Metab) 2002;282:E873–9.Google Scholar
  43. 43.
    Vahl TP, Paty BW, Fuller BD, Prigeon RL, D'Alessio DA. Effects of GLP-1-(7–36) NH2, GLP-1-(7–37), and GLP-1-(9–36) NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 2003;88:1772–1779.PubMedGoogle Scholar
  44. 44.
    Meier JJ, Gethmann A, Nauck MA, Götze O, Schmitz F, Deacon CF, et al. The glucagon-like peptide-1 metabolite GLP-1-(9–36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans. Am J Physiol (Endocrinol Metab) 2006;290:E 1118–1123.Google Scholar
  45. 45.
    Ørskov C, Wettergren A, Holst JJ. Biological effects and metabolic rates of glucagonlike peptide-1 7–36 amide and glucagonlike peptide-1 7–37 in healthy subjects are indistinguishable. Diabetes 1993;42:658–661.PubMedGoogle Scholar
  46. 46.
    Meier JJ, Nauck MA, Kranz D, Holst JJ, Deacon CF, Gaeckler D, et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 2004;53:654–662.PubMedGoogle Scholar
  47. 47.
    Plamboeck A, Holst JJ, Carr RD, Deacon CF. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 2005;48:1882–1890.PubMedGoogle Scholar
  48. 48.
    Plamboeck A, Holst JJ, Carr RD, Deacon CF. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both involved in regulating the metabolic stability of glucagon-like peptide-1 in vivo. Adv Exp Med Biol 2003;524:303–312.PubMedGoogle Scholar
  49. 49.
    Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci U S A 2000;97(12):6874–6879.PubMedGoogle Scholar
  50. 50.
    Yamada Y, Hayami T, Nakamura K, Kaisaki PJ, Someya Y, Wang CZ, et al. Human gastric inhibitory polypeptide receptor: cloning of the gene (GIPR) and cDNA. Genomics 1995;29:773–776.PubMedGoogle Scholar
  51. 51.
    Yamada Y, Seino Y. Physiology of GIP -a lesson from GIP receptor knockout mice. Horm Metab Res 2004;36:771–774.PubMedGoogle Scholar
  52. 52.
    Yamada Y, Miyawaki K, Tsukiyama K, Harada N, Yamada C, Seino Y. Pancreatic and extrapancreatic effects of gastric inhibitory polypeptide. Diabetes 2006;55(Suppl. 2):S86–91.Google Scholar
  53. 53.
    Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002;8:738–742.PubMedGoogle Scholar
  54. 54.
    Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 1992;89:8641–8645.PubMedGoogle Scholar
  55. 55.
    Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes 1993;42:1678–1682.PubMedGoogle Scholar
  56. 56.
    Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett 1995;358:219–224.PubMedGoogle Scholar
  57. 57.
    Wei Y, Mojsov S. Distribution of GLP-1 and PACAP receptors in human tissues. Acta Physiol Scand 1996;157:355–357.PubMedGoogle Scholar
  58. 58.
    Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 1987;84:3434–3438.PubMedGoogle Scholar
  59. 59.
    Fehmann H-C, Habener JF. Insulinotropic hormone glucagon-like peptide-I (7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma β TC-1 cells. Endocrinology 1992;130:159–166.PubMedGoogle Scholar
  60. 60.
    Brubaker PL, Drucker DJ. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004;145:2653–2659. Epub 2004 Mar 24.PubMedGoogle Scholar
  61. 61.
    Drucker DJ. The biology of incretin hormones. Cell Metabolism 2006;3:153–165.PubMedGoogle Scholar
  62. 62.
    Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000; 141:4600–4605.PubMedGoogle Scholar
  63. 63.
    Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003;278:471–478.PubMedGoogle Scholar
  64. 64.
    Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 2004;47:806–815.PubMedGoogle Scholar
  65. 65.
    Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003;144:5149–5158.PubMedGoogle Scholar
  66. 66.
    Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y, et al. Glucose intolerance caused by a defect in the entero-insular axis: A study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999;96:14843–14847.PubMedGoogle Scholar
  67. 67.
    Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004;113:635–645.PubMedGoogle Scholar
  68. 68.
    Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002;87:1239–1246.PubMedGoogle Scholar
  69. 69.
    Ørskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 1988;123:2009–2013.PubMedGoogle Scholar
  70. 70.
    Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993;38:665–673.PubMedGoogle Scholar
  71. 71.
    Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Ørskov C, Ritzel R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol (Endocrinol Metab) 1997;273: E 981–988.Google Scholar
  72. 72.
    Meier JJ, Kemmeries G, Holst JJ, Nauck MA. Erythromycin antagonizes the deceleration of gastric emptying by glucagon-like peptide 1 and unmasks its insulinotropic effect in healthy subjects. Diabetes 2005;54:2212–2218.PubMedGoogle Scholar
  73. 73.
    Little TJ, Pilichiewicz AN, Russo A, Phillips L, Jones KL, Nauck MA, et al. Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J Clin Endocrinol Metab 2006;91:1916–1923.PubMedGoogle Scholar
  74. 74.
    Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide-1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998;101:515–520.PubMedGoogle Scholar
  75. 75.
    Flint A, Raben A, Ersboll AK, Holst JJ, Astrup A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord 2001;25:781–792.PubMedGoogle Scholar
  76. 76.
    Gutzwiller JP, Drewe J, Göke B, Schmidt H, Rohrer B, Lareida J, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol (Integr Regul Physiol) 1999;276:R 1541–1544.Google Scholar
  77. 77.
    Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 1999;44:81–86.PubMedCrossRefGoogle Scholar
  78. 78.
    Verdich C, Flint A, Gutzwiller JP, Naslund E, Beglinger C, Hellstrom PM, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001;86:4382–4389.PubMedGoogle Scholar
  79. 79.
    Burcelin R, Da Costa A, Drucker D, Thorens B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes 2001;50:1720–1728.PubMedGoogle Scholar
  80. 80.
    Wang Z, Wang RM, Owji AA, Smith DM, Ghatei MA, Bloom SR. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest 1995;95:417–421.PubMedGoogle Scholar
  81. 81.
    Kolligs F, Fehmann HC, Göke R, Göke B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9–39) amide. Diabetes 1995;44:16–19.PubMedGoogle Scholar
  82. 82.
    Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996;2:1254–1258.PubMedGoogle Scholar
  83. 83.
    Schirra J, Sturm K, Leicht P, Arnold R, Göke B, Katschinski M. Exendin (9–39) amide is an antagonist of glucagon-like peptide-1 (7–36) amide in humans. J Clin Invest 1998;101:1421–1430.PubMedGoogle Scholar
  84. 84.
    Schirra J, Nicolaus M, Roggel R, Katschinski M, Storr M, Woerle HJ, et al. Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 2006;55:243–251.PubMedGoogle Scholar
  85. 85.
    Edwards CMB, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA, et al. GLP-1 has a physiological role in the control of postprandial glucose in man. Studies with the antagonist exendin 9–39. Diabetes 1999;48:86–93.PubMedGoogle Scholar
  86. 86.
    Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes. Diabetologia 1986;29:46–54.PubMedGoogle Scholar
  87. 87.
    Krarup T, Vilsbøll T, Madsbad S, Larsen S, Holst JJ, Højberg PV, et al. The incretin effect is preserved in glucose tolerant patients with chronic pancreatitis -but reduced in patients with chronic pancreatitis and secondary diabetes (abstract 0657). Diabetologia 2006;49(Suppl. 1):399.Google Scholar
  88. 88.
    Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001;86:3717–3723.PubMedGoogle Scholar
  89. 89.
    Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly J, et al. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes 1990;39:1381–1390.PubMedGoogle Scholar
  90. 90.
    Jones IR, Owens DR, Luzio S, Williams S, Hayes TM. The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1989;32:668–677.PubMedGoogle Scholar
  91. 91.
    Creutzfeldt W, Ebert R, Nauck M, Stöckmann F. Disturbances of the entero-insular axis. Scand J Gastroenterol 1983;82(Suppl.):111–119.Google Scholar
  92. 92.
    Ding WG, Renström E, Rorsman P, Buschard K, Gromada J. Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes 1997;46:792–800.PubMedGoogle Scholar
  93. 93.
    Jones IR, Owens DR, Moody AJ, Luzio SD, Morris T, Hayes TM. The effects of glucose-dependent insulinotropic polypeptide infused at physiological concentrations in normal subjects and Type 2 (non-insulin-dependent) diabetic patients on glucose tolerance and B-cell secretion. Diabetologia 1987;30:707–712.PubMedGoogle Scholar
  94. 94.
    Nauck MA, Baller B, Meier JJ. Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes. Diabetes 2004;53(Suppl. 3):S190–6.PubMedGoogle Scholar
  95. 95.
    Meier JJ, Nauck MA. Incretins and the development of type 2 diabetes. Curr Diab Rep 2006;6:194–201.PubMedGoogle Scholar
  96. 96.
    Kjems LL, Holst JJ, Vølund A, Madsbad S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003;52:380–386.PubMedGoogle Scholar
  97. 97.
    Meier JJ, Gallwitz B, Salmen S, Goetze O, Holst JJ, Schmidt WE, et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab 2003;88:2719–2725.PubMedGoogle Scholar
  98. 98.
    Nauck MA. Therapeutic potential of glucagon-like peptide 1 in type 2 diabetes. Diabetic Medicine 1996;13(Suppl.):S39–S43.PubMedGoogle Scholar
  99. 99.
    Amland PF, Jorde R, Aanderup S, Burhol PG, Giercksky K-E. Effects of intravenously infused porcine GIP on serum insulin, plasma C-peptide, and pancreatic polypeptide in non-insulin-dependent diabetes in the fasting state. Scand J Gastroenterol 1985;20:315–320.PubMedGoogle Scholar
  100. 100.
    Nauck MA, Schmidt WE, Ebert R, Striezel J, Cantor P, Hoffmann G, et al. Insulinotropic properties of synthetic gastric inhibitory peptide in man: interactions with glucose, phenylalanine, and cholezystokinin-8. J. Clin. Endocrinol. Metab. 1989;69:654–662.PubMedGoogle Scholar
  101. 101.
    Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986;63:492–498.PubMedGoogle Scholar
  102. 102.
    Holst JJ, Gromada J, Nauck MA. The pathogenesis of NIDDM involves a defective expression of the GIP receptor. Diabetologia 1997;40:984–986.PubMedGoogle Scholar
  103. 103.
    Meier JJ, Nauck MA. Incretins and the development of type 2 diabetes. Curr Diab Rep 2006;6:194–201.PubMedGoogle Scholar
  104. 104.
    Vilsbøll T, Knop FK, Krarup T, Johansen A, Madsbad S, Larsen S, et al. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J Clin Endocrinol Metab. 2003;88:4897–4903.PubMedGoogle Scholar
  105. 105.
    Hinke SA, Lynn F, Ehses J, Pamir N, Manhart S, Kuhn-Wache K, et al. Glucose-dependent insulinotropic polypeptide (GIP): development of DP IV-resistant analogues with therapeutic potential. Adv Exp Med Biol 2003;524:293–301.PubMedGoogle Scholar
  106. 106.
    Gault VA, O'Harte FP, Harriott P, Mooney MH, Green BD, Flatt PR. Effects of the novel (Pro3) GIP antagonist and exendin (9–39) amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia 2003;46:222–230.PubMedGoogle Scholar
  107. 107.
    Irwin N, Gault VA, Green BD, Greer B, Harriott P, Bailey CJ, et al. Antidiabetic potential of two novel fatty acid derivatised, N-terminally modified analogues of glucose-dependent insulinotropic polypeptide (GIP): N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37). Biol Chem 2005;386:679–687.PubMedGoogle Scholar
  108. 108.
    Pederson RA, Brown JC. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas. Endocrinol 1978;103:610–615.Google Scholar
  109. 109.
    Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 2003;46:798–801.PubMedGoogle Scholar
  110. 110.
    Nauck MA, Kleine N, Ørskov C, Holst JJ, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993;36:741–744.PubMedGoogle Scholar
  111. 111.
    Toft-Nielsen MB, Madsbad S, Holst JJ. Determinants of the effectiveness of glucagon-like peptide-1 in type 2 diabetes. J Clin Endocrinol Metab 2001;86:3853–3860.PubMedGoogle Scholar
  112. 112.
    Nauck MA, Meier JJ. Glucagon-like peptide 1 (GLP-1) and its derivatives in the treatment of diabetes. Regul Pept 2005;128:135–148.PubMedGoogle Scholar
  113. 113.
    Willms B, Werner J, Holst JJ, Ørskov C, Creutzfeldt W, Nauck MA. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996;81:327–332.PubMedGoogle Scholar
  114. 114.
    Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002;359:824–830.PubMedGoogle Scholar
  115. 115.
    Meier JJ, Weyhe D, Michaely M, Senkal M, Zumtobel V, Nauck MA, et al. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit Care Med 2004;32:848–851.PubMedGoogle Scholar
  116. 116.
    Nauck MA, Walberg J, Vethacke A, El Ouaghlidi A, Senkal M, Holst JJ, et al. Blood glucose control in healthy subject and patients receiving intravenous glucose infusion or total parenteral nutrition using glucagon-like peptide 1. Regul Pept 2004;118:89–97.PubMedGoogle Scholar
  117. 117.
    Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 1992;267:7402–7405.PubMedGoogle Scholar
  118. 118.
    Fehmann HC, Jiang J, Schweinfurth J, Wheeler MB, Boyd AE, 3rd, Goke B. Stable expression of the rat GLP-I receptor in CHO cells: activation and binding characteristics utilizing GLP-I(7–36)-amide, oxyntomodulin, exendin-4, and exendin(9–39). Peptides. 1994;15(3):453–456.PubMedGoogle Scholar
  119. 119.
    DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005;28:1092–1100.PubMedGoogle Scholar
  120. 120.
    Buse JB, Henry RR, Han J, Kim DD, Fineman M, Baron AD, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004;27:2628–2635.PubMedGoogle Scholar
  121. 121.
    Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005;28: 1083–1091.PubMedGoogle Scholar
  122. 122.
    Zinman B, Hoogwerf B, Garcia SG, Milton D, Giaconia J, Kim D, et al. Safety and efficacy of exenatide in patients with type 2 diabetes mellitus using thiazolidindiones with or without metformin (abstract 117-OR). Diabetes 2006; 55(Suppl. 1):A 28.Google Scholar
  123. 123.
    Ratner RE, Stonehouse A, Gao H-Y, Poon T, Kim D. Exenatide maintains glycaemic control for 2 years in patients with type 2 diabetes: data from an ongoing, open-label study (abstract). Diabetologia 2005;48(Suppl. 1):A 288–289.Google Scholar
  124. 124.
    Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005;143:559–569.PubMedGoogle Scholar
  125. 125.
    Nauck MA, Duran S, Kim D, Johns D, Northrup J, Festa A, et al. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia 2006;50:259–267. Epub Dec. 8, 2006.PubMedGoogle Scholar
  126. 126.
    Knudsen LB, Nielsen PF, Huusfeldt PO, Johansen NL, Madsen K, Pedersen FZ, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 2000;43:1664–1669.PubMedGoogle Scholar
  127. 127.
    Agersø H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002;45:195–202.PubMedGoogle Scholar
  128. 128.
    Elbrønd B, Jakobsen G, Larsen S, Agersø H, Jensen LB, Rolan P, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 2002;25:1398–1404.PubMedGoogle Scholar
  129. 129.
    Bjerre Knudsen L, Møller Knudsen S, Wilken M, Colding-Jørgensen M, Plum A, Agersø H, et al. Plasma protein binding of NN2211, a long-acting derivative of GLP-1, is important for its efficacy. Diabetes 2005;52(Suppl. 1):A 321–322.Google Scholar
  130. 130.
    Vilsbøll T, Zdravkovic M, Le-Thi T, Krarup T, Schmitz O, Courreges J, et al. Liraglutide significantly improves glycemic control, and lowers body weight without risk of either major or minor hypoglycemic episodes in subjects with type 2 diabetes (abstract 115-OR). Diabetes 2006;55(Suppl. 1):A 27–28.Google Scholar
  131. 131.
    Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): A 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004;27:1335–1342.PubMedGoogle Scholar
  132. 132.
    Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2006;114:417–423.PubMedGoogle Scholar
  133. 133.
    Feinglos MN, Saad MF, Pi-Sunyer FX, An B, Santiago O. Effects of liraglutide (NN2211), a long-acting GLP-1 analogue, on glycaemic control and bodyweight in subjects with Type 2 diabetes. Diabetic Med 2005;22:1016–1023.PubMedGoogle Scholar
  134. 134.
    Gedulin BR, Smith P, Prickett KS, Tryon M, Barnhill S, Reynolds J, et al. Dose-response for glycaemic and metabolic changes 28 days after single injection of long-acting release exenatide in diabetic fatty Zucker rats. Diabetologia 2005;48:1380–1385.PubMedGoogle Scholar
  135. 135.
    Kim D, MacConnell L, Zhuang D, Scnabel C, Taylor K, Li W-I, et al. Safety and efficacy of a once-weekly, long-acting release formulation of exenatide over 15 weeks in patients with type 2 diabetes (abstract 487-P). Diabetes 2006;55(Suppl 1):A 116.Google Scholar
  136. 136.
    Kim JG, Baggio LL, Bridon DP, Castaigne JP, Robitaille MF, Jette L, et al. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes 2003;52:751–759.PubMedGoogle Scholar
  137. 137.
    Baggio LL, Huang Q, Brown TJ, Drucker DJ. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 2004;53:2492–2500.PubMedGoogle Scholar
  138. 138.
    Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995;136:3585–3596.PubMedGoogle Scholar
  139. 139.
    De Meester I, Durinx C, Bal G, Proost P, Struyf S, Goossens F, et al. Natural substrates of dipeptidyl peptidase IV. Adv Exp Med Biol 2000;477:67–87.PubMedGoogle Scholar
  140. 140.
    De Meester I, Lambeir AM, Proost P, Scharpe S. Dipeptidyl peptidase IV substrates. An update on in vitro peptide hydrolysis by human DPPIV. Adv Exp Med Biol 2003;524:3–17.PubMedGoogle Scholar
  141. 141.
    Deacon CF, Nauck MA, Meier J, Hücking K, Holst JJ. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000;85:3575–3581.PubMedGoogle Scholar
  142. 142.
    Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995;80:952–957.PubMedGoogle Scholar
  143. 143.
    Ørskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 1996;31:665–670.PubMedGoogle Scholar
  144. 144.
    Nauck MA, El-Ouaghlidi A, Gabrys B, Hücking K, Holst JJ, Deacon CF, et al. Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Pept 2004;122:209–217.PubMedGoogle Scholar
  145. 145.
    Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006;368:1696–1705.PubMedGoogle Scholar
  146. 146.
    Åhren B, Simonsson E, Larsson H, Landin-Olsson M, Torgeirsson H, Jansson P-A, et al. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 2002;25:869–875.PubMedGoogle Scholar
  147. 147.
    Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, De Smet M, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 2005;78:675–688.PubMedGoogle Scholar
  148. 148.
    Aschner P, Kipnes M, Lunceford J, Mickel C, Davies M, Williams-Herman D. Sitagliptin monotherapy improved glycemic control in the fasting and postprandial states and beta-cell function after 24 weeks in patients with type 2 diabetes (T2DM) (abstract 1995-PO). Diabetes 2006;55 (Suppl. 1):A 462.Google Scholar
  149. 149.
    Charbonnel B, Karasik A, Liu J, Wu M, Meininger G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care. 2006;29:2638–2643.PubMedGoogle Scholar
  150. 150.
    Åhren B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 2004;89:2078–2084.PubMedGoogle Scholar
  151. 151.
    Pratley RE, Jauffret-Kamel S, Galbreath E, Holmes D. Twelve-week monotherapy with the DPP-4 inhibitor vildagliptin improves glycemic control in subjects with type 2 diabetes. Horm Metab Res. 2006;38:423–428.PubMedGoogle Scholar
  152. 152.
    Åhren B, Pacini G, Foley JE, Schweizer A. Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care 2005;28:1936–1940.PubMedGoogle Scholar
  153. 153.
    Åhren B, Gomis R, Standl E, Mills D, Schweizer A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 2004;27:2874–2880.PubMedGoogle Scholar
  154. 154.
    Matikainen N, Manttari S, Schweizer A, Ulvestad A, Mills D, Dunning BE, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49:2049–2057. Epub 2006 Jul 1.PubMedGoogle Scholar
  155. 155.
    Dejager S, Lebeaut A, Couturier A, Schweizer A. Sustained reduction in HbA1c during one-year treatment with vildagliptin in patients with type 2 diabetes (T2DM) (abstract 120-OR). Diabetes 2006;55(Suppl. 1):A 29.Google Scholar
  156. 156.
    Rosenstock J, Baron MA, Schweizer A, Mills D, Dejager S. Vildagliptin is as effective as rosiglitazone in lowering HbA1c but without weight gain in drug-naive patients with type 2 diabetes (T2DM) (abstract 557-P). Diabetes 2006;55(Suppl. 1):A 133.Google Scholar
  157. 157.
    Hansen BC, Bjenning C, Bjerrre Knudsen L. Sustained appetite suppression and weight loss in obese rhesus monkeys treated with a long-acting GLP-1 derivative, NN2211 (abstract). Diabetologia 2001;44(Suppl. 1):A 196.Google Scholar
  158. 158.
    Nauck MA, Hompesch M, Filipicazak R, Le TDT, Nielsen LL, Zdravkovic M, et al. Liraglutide significantly improves glycemic control and reduces body weight compared with glimepiride as add-on to metformin in type 2 diabetes (abstract). Diabetes 2004;53(Suppl. 2):A 83.Google Scholar
  159. 159.
    Scott R, Herman G, Zhao P, Chen X, Wu M, Stein P. Twelve-week efficacy and tolerability of MK-0431, a dipeptidyl peptidase IV (DPP-IV) inhibitor, in the treatment of type 2 diabetes (T2D) (abstract 41-OR). Diabetes 2005;54(Suppl. 1):A 10–11.Google Scholar
  160. 160.
    Hanefeld M, Herman G, Mickel C, McGowan A, Wu M, Zhao P, et al. Effect of MK-0431, a dipeptidyl peptidase IV (DPP-IV) inhibitor, on glycemic control after 12 weeks in patients with type 2 diabetes (abstract 791). Diabetologia 2005;48(Suppl. 1):A 287–288.Google Scholar
  161. 161.
    Brazg R, Thomas K, Zhao P, Xu L, Chen X, Stein P. Effect of adding MK-0431 to ongoing metformin therapy in type 2 diabetic patients who have inadequate glycemic control on metformin (abstract). Diabetes 2005;54(Suppl. 1):A 3.Google Scholar
  162. 162.
    Demuth HU, McIntosh CH, Pederson RA. Type 2 diabetes -therapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta 2005;1751:33–44.PubMedGoogle Scholar
  163. 163.
    Blonde L, Klein EJ, Han J, Zhang B, Mac SM, Poon TH, et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes Metab 2006;8:436–447.PubMedGoogle Scholar
  164. 164.
    Kolterman O, Gottlieb A, Prickett K, Gaines E, Young A. Dose–response for inhibition of glucagon secretion and gastric emptying by synthetic exendin-4 (AC2993) in subjects with Type 2 diabetes (abstract). Diabetes 2000;49 (Suppl. 1):A 114.Google Scholar
  165. 165.
    Dardik B, Valentin M, Schwartzkopf C, Gutierrez C, Stevens D, Russell ME, et al. NVP-LAF237, a dipeptidyl peptidase IV inhibitor, improves glucose tolerance and delays gastric emptying in obese insulin resistant Cynomolgus monkeys (abstract 1292-P). Diabetes 2003;52(Suppl. 1):A 322.Google Scholar
  166. 166.
    Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006;29:1963–1972.PubMedGoogle Scholar
  167. 167.
    Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2006;49:1711–1721.PubMedGoogle Scholar
  168. 168.
    Yki-Järvinen H. Combination therapies with insulin in type 2 diabetes. Diabetes Care 2001;24:758–767.PubMedGoogle Scholar
  169. 169.
    UK prospective diabetes study (UKPDS) group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–865.Google Scholar
  170. 170.
    Williams-Herman D, Goldstein BJ, Feinglos MN, Lunceford J, Johnson J. Initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin provides substantial glycemic improvement and HBA1c goal attainment in patients with type 2 diabetes mellitus (T2DM) (abstract P880). Diabetic Med 2006;23(Suppl. 4):319.Google Scholar
  171. 171.
    Yki-Järvinen H. Thiazolidinediones. N Engl J Med 2004;351:1106–1118.PubMedGoogle Scholar
  172. 172.
    Yki-Järvinen H. The PROactive study: some answers, many questions. Lancet 2005;366:1241–1242.PubMedGoogle Scholar
  173. 173.
    Fineman MS, Shen LZ, Taylor K, Kim DD, Baron AD. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side effects in subjects with type 2 diabetes. Diabetes Metab Res Rev 2004;20:411–417.PubMedGoogle Scholar
  174. 174.
    Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with Type 2 diabetes. Exp Clin Endocrinol Diabetes 2006;114:417–423.PubMedGoogle Scholar
  175. 175.
    Kolterman OG, Kim DD, Shen L, Ruggles JA, Nielsen LL, Fineman MS, et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am Health Syst Pharm 2005;62:173–181.Google Scholar
  176. 176.
    Linnebjerg H, Kothare PA, Skrivanek Z, de la Pena A, Atkins M, Ernest CS, et al. Exenatide: effect of injection time on postprandial glucose in patients with Type 2 diabetes. Diabet Med 2006;23:240–245.PubMedGoogle Scholar
  177. 177.
    Linnebjerg H, Park S, Kothare P, Trautmann M, Mace K, Fineman M, et al. Effects of exenatide on gastric emptying and postprandial glucose in type 2 diabetes (abstract 116-OR). Diabetes 2006;55 (Suppl. 1):A 28.Google Scholar
  178. 178.
    Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003;26:2370–2377.PubMedGoogle Scholar
  179. 179.
    Herman GA, Bergman A, Stevens C, Kotey P, Yi B, Zhao P, et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab 2006;91:4612–4619.PubMedGoogle Scholar
  180. 180.
    Riddle MC, Rosenstock J, Gerich J. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003;26:3080–3086.PubMedGoogle Scholar
  181. 181.
    Yki-Järvinen H, Kauppinen-Makelin R, Tiikkainen M, Vahatalo M, Virtamo H, Nikkila K, et al. Insulin glargine or NPH combined with metformin in type 2 diabetes: the LANMET study. Diabetologia 2006;49:442–451.PubMedGoogle Scholar
  182. 182.
    El-Ouaghlidi A, Rehring E, Schweizer A, Holmes D, Nauck MA. The dipeptidyl peptidase IV inhibitor LAF237 does not accentuate reactive hypoglycaemia caused by the sulfonylurea glibenclamide administered before an oral glucose load in healthy subjects (abstract 507-P). Diabetes 2003;52(Suppl. 1):A 118.Google Scholar
  183. 183.
    Henry RR, Ratner RE, Stonehouse AH, Guan X, Poon T, Malone JK, et al. Exenatide maintained glycemic control with associated weight reduction over 2 years in patients with type 2 diabetes (abstract 485-P). Diabetes 2006;55(Suppl. 1):A 116.Google Scholar
  184. 184.
    Ritzel R, Ørskov C, Holst JJ, Nauck MA. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7–36 amide] after subcutaneous injection in healthy volunteers. Dose–response-relationships. Diabetologia 1995;38:720–725.PubMedGoogle Scholar
  185. 185.
    Buse JB, Henry R, Han J, Kim DD, Fineman MS, Baron AD. Effect of exenatide (exendin-4) on glycemic control and safety over 30 weeks in sulfonylurea-treated patients with type 2 diabetes (abstract 352-OR). Diabetes 2004;53(Suppl. 2):A 82.Google Scholar
  186. 186.
    Dang NH, Morimoto C. CD26: an expanding role in immune regulation and cancer. Histol. Histopathol. 2002;17(4):1213–1226.Google Scholar
  187. 187.
    Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006;49:2564–2571. [Epub 2006 Sep 26.].PubMedGoogle Scholar
  188. 188.
    Haffner SM, Lehto S, Ronnemaa T, Pyorälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–234.PubMedGoogle Scholar
  189. 189.
    U.K. prospective diabetes study group. U.K. prospective diabetes study 16: Overview of 6 years therapy of type II diabetes: A progressive disease (Perspectives in diabetes). Diabetes 1995;44:1249–1258.Google Scholar
  190. 190.
    Levy J, Atkinson AB, Bell PM, McCance DR, Hadden DR. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med 1998;15:290–296.PubMedGoogle Scholar
  191. 191.
    Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. J Am Med Ass 1999;281:2005–2012.Google Scholar
  192. 192.
    Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355:2427–2443.PubMedGoogle Scholar
  193. 193.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52:102–110.PubMedGoogle Scholar
  194. 194.
    Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14(10):619–633.PubMedGoogle Scholar
  195. 195.
    Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia. 2005;48:2221–2228. [Epub 2005 Oct 5.].PubMedGoogle Scholar
  196. 196.
    Meier JJ, Bhushan A, Butler PC. The potential for stem cell therapy in diabetes. Pediatr Res. 2006;59:65R–73R.PubMedGoogle Scholar
  197. 197.
    Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999;42:856–864.PubMedGoogle Scholar
  198. 198.
    Buteau J, Foisy S, Joly E, Prentki M. Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 2003;52:124–132.PubMedGoogle Scholar
  199. 199.
    Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999;48:2270–2276.PubMedGoogle Scholar
  200. 200.
    Tourrel C, Bailbe D, Meile MJ, Kergoat M, Portha B. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 2001;50:1562–1570.PubMedGoogle Scholar
  201. 201.
    Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 2002;51:1443–1452.PubMedGoogle Scholar
  202. 202.
    Stoffers DA, Desai BM, DeLeon DD, Simmons RA. Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 2003;52:734–740.PubMedGoogle Scholar
  203. 203.
    Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 2002;143:4397–4408.PubMedGoogle Scholar
  204. 204.
    De Leon DD, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 2003;52:365–371.PubMedGoogle Scholar
  205. 205.
    Rolin B, Larsen MO, Gotfredsen CF, Deacon CF, Carr RD, Wilken M, et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol (Endocrinol Metab) 2002;283:E 745–752.Google Scholar
  206. 206.
    Bregenholt S, Moldrup A, Blume N, Karlsen AE, Nissen Friedrichsen B, Tornhave D, et al. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun. 2005;330:577–584.PubMedGoogle Scholar
  207. 207.
    Pospisilik JA, Martin J, Doty T, Ehses JA, Pamir N, Lynn FC, et al. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 2003;52:741–750.PubMedGoogle Scholar
  208. 208.
    Mu J, Woods J, Zhou YP, Roy RS, Li Z, Zycband E, et al. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes 2006;55:1695–1704.PubMedGoogle Scholar
  209. 209.
    Butler AE, Janson J, Soeller WC, Butler PC. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes. 2003;52(9):2304–2314.PubMedGoogle Scholar
  210. 210.
    Larsen MO, Rolin B, Sturis J, Wilken M, Carr RD, Porksen N, et al. Measurements of insulin responses as predictive markers of pancreatic beta-cell mass in normal and beta-cell-reduced lean and obese Gottingen minipigs in vivo. Am J Physiol Endocrinol Metab. 2006;290:E670–7. [Epub 2005 Nov 8.].Google Scholar
  211. 211.
    Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000;49:741–748.PubMedGoogle Scholar
  212. 212.
    Hui H, Wright C, Perfetti R. Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes 2001;50:785–796.PubMedGoogle Scholar
  213. 213.
    Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2003;144:1444–1455.PubMedGoogle Scholar
  214. 214.
    Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002;143:3152–3161.PubMedGoogle Scholar
  215. 215.
    Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC. Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care 2006;29:717–718.PubMedGoogle Scholar
  216. 216.
    Duttaroy A, Voelker F, Zhang X, Ren X, Merriam K, Qiu L, et al. The DPP-4 inhibitor vildagliptin increases pancreatic beta cell mass in rodents (abstract 481). Diabetologia 2005;48(Suppl. 1):A 178.Google Scholar
  217. 217.
    Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, et al. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 2003;144:2242–2252.PubMedGoogle Scholar
  218. 218.
    Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005;54:146–151.PubMedGoogle Scholar
  219. 219.
    Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004;109:962–965. [Epub 2004 Feb 23.].PubMedGoogle Scholar
  220. 220.
    Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004;110:955–961.PubMedGoogle Scholar
  221. 221.
    Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2003;88:3082–3089.PubMedGoogle Scholar
  222. 222.
    Juhl CB, Hollingdal M, Sturis J, Jakobsen G, Agerso H, Veldhuis J, et al. Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes 2002;51:424–429.PubMedGoogle Scholar
  223. 223.
    Quddusi S, Vahl TP, Hanson K, Prigeon RL, D'Alessio DA. Differential effects of acute and extended infusions of glucagon-like peptide-1 on first- and second-phase insulin secretion in diabetic and nondiabetic humans. Diabetes Care 2003;26:791–798.PubMedGoogle Scholar
  224. 224.
    Fehse FC, Trautmann M, Holst JJ, Halseth AE, Fineman MS, Kim D, et al. Effects of exenatide on first and second phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes (Abstract). Diabetes 2004;53(Suppl. 2):A 83.Google Scholar
  225. 225.
    Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Frank BH, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 1988;318:1231–1239.PubMedCrossRefGoogle Scholar
  226. 226.
    Rachman J, Gribble FM, Levy JC, Turner RC. Near-normalization of diurnal glucose concentrations by continuous administration of glucagon-like peptide 1 (GLP-1) in subjects with NIDDM. Diabetologia 1997;40:205–211.PubMedGoogle Scholar
  227. 227.
    Gerich JE. Abnormal glucagon secretion in type 2 (noninsulin-dependent) diabetes mellitus: Causes and consequences. In: Creutzfeldt W, Lefèbvre P, editors. Diabetes mellitus: Pathophysiology and therapy. Berlin, Heidelberg: Springer Verlag; 1989, 127–133.Google Scholar
  228. 228.
    Degn KB, Brock B, Juhl CB, Djurhuus CB, Grubert J, Kim D, et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes 2004;53:2397–2403.PubMedGoogle Scholar
  229. 229.
    Nauck M, El-Ouaghlidi A, Hompesch M, Jacobsen J, Elbrønd B. No impairment of hypoglycemia counterregulation via glucagon with NN2211, a GLP-1 derivative, in subjects with type 2 diabetes (abstract 550-P). Diabetes 2003;52(Suppl. 1)(A 128).Google Scholar
  230. 230.
    Fehmann HC, Göke R, Göke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 1995;16:390–410.PubMedGoogle Scholar
  231. 231.
    Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia 1983;24:366–371.PubMedGoogle Scholar
  232. 232.
    Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 2001;50:2237–2243.PubMedGoogle Scholar
  233. 233.
    Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ. β-cell PDX1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 2005;54:482–491.PubMedGoogle Scholar
  234. 234.
    Bregenholdt S, Moldrup A, B. Knudsen L, Petersen JS. The GLP-1 derivative NN2211 inhibits cytokine-induced apoptosis in primary rat β-cells (abstracts). Diabetes 2001;50(Suppl. 1):A 31.Google Scholar
  235. 235.
    Phillips WT, Salman UA, McMahan CA, Schwartz JG. Accelerated gastric emptying in hypertensive subjects. J Nucl Med 1997;38:207–211.PubMedGoogle Scholar
  236. 236.
    Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 1995;122:481–486.PubMedGoogle Scholar
  237. 237.
    Poon T, Nelson P, Shen L, Mihm M, Taylor K, Fineman M, et al. Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: a dose-ranging study. Diabetes Technol Ther 2005;7:467–477.PubMedGoogle Scholar
  238. 238.
    Harder H, Nielsen L, Tu DT, Astrup A. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care 2004;27:1915–1921.PubMedGoogle Scholar
  239. 239.
    Raz I, Hanefeld M, Xu L, Caria C, Davies M, Williams-Herman D, et al. Sitagliptin monotherapy improved glycemic control and beta-cell function after 18 weeks in patients with type 2 diabetes (T2DM) (abstract 1996-PO). Diabetes 2006;55(Suppl. 1):A 462.Google Scholar
  240. 240.
    Nonoka K, Kakikawa T, Sato A, Okuyama K, Fujimoto G, Hayashi N, et al. Twelve-week efficacy and tolerability of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, in Japanese patients with type 2 diabetes (Abstract 0038). Diabetologia 2006;49(Suppl. 1):25.Google Scholar
  241. 241.
    Karasik A, Charbonnell B, Liu J, Wu M, Meehan A, Meininger G. Sitagliptin added to ongoing metformin therapy enhanced glycemic control and beta-cell function in patients with type 2 diabetes (abstract 501-P). Diabetes 2006;55(Suppl. 1):A 119–120.Google Scholar
  242. 242.
    Nauck MA, Meininger G, Sheng D, Terranella L, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared to the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: A randomized, double-blind, non-inferiority trial. Diabetes Obesity Metab 2007;9:194–205.Google Scholar
  243. 243.
    Rosenstock J, Brazg R, Andryuk PJ, McCrary Sisk C, Lu K, Stein P. Addition of sitagliptin to pioglitazone improved glycemic control with neutral weight effect over 24 weeks in inadequately controlled type 2 diabetes (T2DM) (abstract 556-P). Diabetes 2006;55(Suppl. 1):A 132–133.Google Scholar
  244. 244.
    Pratley R, Galbreath E. Twelve-week monotherapy with the DPP-4 inhibitor, LAF 237 improves glycemic control in patients with type 2 diabetes (T2DM) (abstract 355-OR). Diabetes 2004;53(Suppl. 2):A 83.Google Scholar
  245. 245.
    Kikuchi M, Abe N, Kato M, Terao S, Holmes D, Mimori N. Vildagliptin decreases HbA1c after 12 weeks treatment in Japanese patients with type 2 diabetes (abstract 0789). Diabetologia 2006;49(Suppl. 1):478.Google Scholar
  246. 246.
    Dejager S, Baron MA, Razac S, Foley JE, Dickinson S, Schweizer A. Efficacy of vildagliptin in drug-naïve patients with type 2 diabetes (abstract 0791). Diabetologia 2006;49(Suppl. 1):479.Google Scholar
  247. 247.
    Garber A, Camisasca RP, Ehrsam E, Collober-Maugeais C, Rochotte E, Lebeaut A. Vildagliptin added to metformin improves glycemic control and may mitigate metformin-induced GI side effects in patients with type 2 diabetes (T2DM) (abstract 121-OR). Diabetes 2006;55(Suppl. 1):A 29.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michael A. Nauck
    • 1
  • Wolfgang E. Schmidt
    • 1
  • Juris J. Meier
    • 1
  1. 1.Diabeteszentrum Bad LauterbergGermany

Personalised recommendations