Advertisement

Design features of some radio telescopes

  • Jacob W.M. Baars
Part of the Astrophysics and Space Science Library book series (ASSL, volume 348)

Abstract

The first fully steerable parabolic reflectors were second World War radar antennas, developed both in Germany and the allied countries. The developments to ever larger and more accurate antennas has been mainly an activity by radio astronomers and mechanical and structural engineers working with them. The full story of this fascinating development has still to be written. In this chapter we shall not endeavour to undertake such a task.

Keywords

Elevation Angle Reflector Surface Radio Telescope Square Kilometer Array Gravitational Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, H., Die Stahlkonstruktion des 100-m Radioteleskops in Effelsberg, Der Stahlbau 41, 321 ff and 360 ff, 1972.Google Scholar
  2. Baars, J.W.M., Technology of large Radio Telescopes for millimeter and submillimeter wavelengths, Infrared and Millimeter Waves, 9, 241–281, K.J. Button, Ed., New York, Academic Press, 1983.Google Scholar
  3. Baars, J.W.M. and B.G. Hooghoudt, The Synthesis Radio Telescope at Westerbork. General Lay-out and Mechanical Aspects, Astron. Astrophys. 31, 323–331, 1974.ADSGoogle Scholar
  4. Baars, J.W.M., B.G. Hooghoudt, P.G. Mezger and M. J. de Jonge, The IRAM 30-m millimeter radio telescope on Pico Veleta, Spain. Astron. Astrophys. 175, 319–326, 1987 [Gold, 56].ADSGoogle Scholar
  5. Baars, J.W.M. A. Greve, H. Hein, D. Morris, J. Penalver and C. Thum, Design parameters and measured performance of the IRAM 30-m millimeter radio telescope, Proc. IEEE 82, 687–696, 1994.CrossRefADSGoogle Scholar
  6. Baars, J.W.M, R.N. Martin, J.G. Mangum, J.P. McMullin, W.L. Peters, The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory, Publ. Astron. Soc. Pacific 111, 627–646, 1999.CrossRefADSGoogle Scholar
  7. Baars, J.W.M., J.G. Mangum, R. Lucas and J.A. Lopez-Perez, Near-Field Radio Holography of Large Reflector Antennas, IEEE Antennas and Propagation Magazine 48, 2006.Google Scholar
  8. Bowen, E.G. and H.C. Minnett, The Australian 210-foot Radio Telescope, Proc. Inst. Radio Eng. Australia 24, 98–105, 1963.Google Scholar
  9. Brandt, P. and H. Gatzlaff, Das Design des 30-m Millimeterwellen-Radioteleskops, Krupp Forschungsberichte 39, 111–124, 1981.Google Scholar
  10. Christiansen, W.N., W.C. Erickson and J.A. Högbom, The Benelux Cross Antenna Project, Proc. Inst. Radio Engineers Australia 24, 219–225, 1963.Google Scholar
  11. Eschenauer, H., H. Gatzlaff and H.W. Kiedrowski, Entwicklung und Optimierung hochgenauer Paneeltragstrukturen, Tech. Mitt. Krupp Forschungs Ber. 38, 43–57, 1980.Google Scholar
  12. Geldmacher, E., 100-m Radioteleskop für das Max-Planck-Institut für Radioastronomie Bonn, Tech. Mitteilungen Krupp 28, 187–197, 1970.Google Scholar
  13. Gordon, M.A., Recollections of “Tucson Operations”, New York, Springer, 2005.Google Scholar
  14. Greve, A., J.W.M. Baars, J. Peñalver, and B. LeFloch, Near focus active optics: an inexpensive method to improve millimeter wavelength radio telescopes, Radio Sci. 31, 1053–1066, 1996.CrossRefADSGoogle Scholar
  15. Greve, A., M. Bremer, J. Peñalver, P. Raffin and D. Morris, Improvement of the IRAM 30-m Telescope from Temperature Meausurements and Finite-Element Calculations, IEEE Trans. Antennas and Propag. AP-53, 851–860, 2005.CrossRefADSGoogle Scholar
  16. Greve, A. and J.G. Mangum, Mechanical Measurements of the ALMA Prototype Antennas, IEEE Antennas and Propagation Magazine 49, 2007.Google Scholar
  17. Guilloteau, S., J. Delannoy, D. Downes, A. Greve, M. Guelin, R. Lucas, D. Morris, S.J.E. Radford, J. Wink, J Cernicharo, T. Forveille, S. Garcia-Burillo, R. Neri, J. Blondel, A. Perrigourad, D. Plathner, and M. Torres, The IRAM interferometer on Plateau de Bure, Astron. Astrophys. 262, 624–633, 1992.ADSGoogle Scholar
  18. Hachenberg, O., Studien zur Konstruktion des 100-m Teleskops, Beiträge zur Radioastronomie (MPIfR) 1, 31–61, 1968.Google Scholar
  19. Hachenberg. O., B.H. Grahl and R. Wielebinski, The 100-meter Radio Telescope at Effelsberg. Proc. IEEE 61, 1288–1295, 1973 [Gold, 32].ADSCrossRefGoogle Scholar
  20. Hooghoudt, B.G., The Benelux Cross Antenna Project, Annals. New York Acad. Sci. 116, 13–24, 1964.CrossRefADSGoogle Scholar
  21. Jacobs, E. and H.E. King, A 2.8-minute beamwidth, millimeter-wave antenna — measurements and evaluation, IEEE Int. Conv. Rec. 13, Pt.5, 92–100, 1965.CrossRefGoogle Scholar
  22. Kärcher, H.J., Enhanced pointing of telescopes by smart structure concepts based on modal observers, SPIE Proceedings 3668, 998–1009, 1999.CrossRefADSGoogle Scholar
  23. Karcher, H.J., Telescopes as mechatronic systems, IEEE Antennas and Propagation Magazine 48, No.2, 17–37, 2006.CrossRefADSGoogle Scholar
  24. Kärcher, H.J. and J.W.M. Baars, The design of the Large Millimeter Telescope/Gran Telescopio Milimétrico (LMT/GTM), SPIE Proceedings, 4015, 155–168, 2000.CrossRefADSGoogle Scholar
  25. Leighton, R.B., A 10-meter telescope for millimeter and sub-millimeter astronomy, Tech. Rep California Inst. of Technology, May 1978.Google Scholar
  26. Mäder, H.F., K.-H. Stenvers, H. Gatzlaff and H.-F. Wilms, The 10-m Submillimeterwave Telescope, Technische Mitteilungen Krupp, No.1, 27–42, 1990.Google Scholar
  27. Mangum, J.G., Baars, J.W.M., Greve, A., Lucas, R., Snel, R., Wallace, P.T., & Holdaway, M. Evaluation of the ALMA Prototype Antennas, Publ. Ason. Soc. Pacific 118, 1257–1301, 2006.ADSCrossRefGoogle Scholar
  28. Mezger, P.M., Principle considerations of radioastronomical observations at very high frequencies, NRAO unnumbered Internal Report, March 1964.Google Scholar
  29. Nelson J.E., M.P. Budiansky, G. Gabor and T.S. Mast, The segmented-mirror control system prototype for the ten meter telescope, Proc. SPIE 444, 274–286, 1983.ADSGoogle Scholar
  30. Ryle, M., The new Cambridge Telescope, Nature 194, 517–518, 1962.CrossRefADSGoogle Scholar
  31. Snel, R.C., J.G. Mangum and J.W.M. Baars, Study of the Dynamics of Large Reflector Antennas with Accelerometers, IEEE Antennas and Propagation Magazine 49, 2007.Google Scholar
  32. Stenvers, K.-H. and H.-F. Wilms, Entwicklung und Optimierung eines tragenden CFK-Raumfachwerks für astronomische Teleskope, VDI-Berichte 734, 75–92, 1989.Google Scholar
  33. Tolbert, C.W., A.W. Straiton and L.C. Krause, A 16-foot diameter millimeter wavelength antenna system, its characteristics and its applications, IEEE Trans. Ant. Prop. AP-13, 225–229, 1965.CrossRefADSGoogle Scholar
  34. von Hoerner, S., Design of large steerable antennas, Astron. J. 72, 35–47, 1967a [Gold, 64].CrossRefADSGoogle Scholar
  35. von Hoerner, S., Homologous deformations of tiltable telescopes, J. Struct. Division Proc. Am. Soc. Engrs. 93, 461–485, 1967b.Google Scholar
  36. von Hoerner, S. and W.Y. Wong, Gravitational deformation and astigmatrism of tiltable radio telescopes, IEEE trans. Antennas Propagation AP-23, 689–695, 1975.CrossRefADSGoogle Scholar
  37. Wilson, R.W., K.B. Jeffers and A.A. Penzias, Carbon monoxide in the Orion Nebula, Astophys. J. 161, L43, 1970.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jacob W.M. Baars
    • 1
  1. 1.European Southern ObservatorySwisttal/BonnGermany

Personalised recommendations