# Measurement of antenna parameters

• Jacob W.M. Baars
Part of the Astrophysics and Space Science Library book series (ASSL, volume 348)

## Abstract

In Chapter 3 we discussed the mathematical description of the radiation characteristics of the reflector antenna, and we treated the influence of aberrations (defocus situations) and other errors in Ch. 4. In radio astronomy the purpose of the telescope, the reflector antenna in our discussion, is to collect radiation from the celestial source as a function of position on the sky, frequency, polarisation and sometimes time. In order to draw conclusions about the source of radiation, we need to establish the relationship between the parameters describing the physical processes in the source and those of the receiving antenna. Thus we must develop a mathematical formulation for the interaction between the transmitting cosmic radio source (or satellite, etc) and the receiving radio telescope, the reflector antenna discussed sofar. As we have seen earlier, the characteristics of the latter are described by the spatial radiation characteristic, which we have called the antenna pattern. By virtue of the reciprocity theorem the pattern of a transmitting antenna is identical to that of a receiving antenna. (Silver, Ch. 2.13, 1949). We have already introduced terms like main beam and sidelobes of the antenna pattern.

## Keywords

Brightness Temperature Radio Source Angular Size Error Pattern Surface Error

## References

1. Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, Nat. Bureau of Standards, 1964.Google Scholar
2. Baars, J.W.M., The Measurement of large Antennas with cosmic Radio Sources, IEEE Trans. Antennas Propagat. AP-21, 461–474, 1973 [Gold, 171].
3. Baars, J.W.M., J.F. van der Brugge, J.L. Casse, J.P. Hamaker, L.H. Sondaar, J.J. Visser and K.J. Wellington, The Synthesis Radio Telescope at Westerbork. Proc IEEE 61, 1258–1266, 1973 [Gold, 116].
4. Baars, J.W.M., R. Genzel, I.I.K. Pauliny-Toth and A. Witzel, The Absolute Spectrum of Cas A; An accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106, 1977 [Gold, 401].
5. Bracewell, R., The Fourier Transform and its Applications, New York, McGraw-Hill, 1965.
6. Findlay, J.W., H. Hvatum and W. B., Waltman, An absolute flux density measure-ment of Cassiopeia A at 1440 MHz. Asrophys. J. 141, 873–884, 1965.
7. Findlay, J.W., Absolute Intensity Calibrations in Radio Astronomy, Ann. Rev. Astron. Astrophys. 4, 77–94, 1966.
8. Gibson, J., W.J. Welch and Imke de Pater, Accurate jovian radio flux density measurements show ammonia to be subsaturated in the upper troposphere, Icarus 173, 439–446, 2005.
9. Gordon, M.A., J.W.M. Baars and J. Cocke, Observations of radio lines from unresolved sources: telescope coupling, Doppler effects and cosmological corrections, Astron. Astrophys. 264, 337–344, 1992.
10. Greve, A., C. Kramer and W. Wild, The beam pattern of the IRAM 30-m telescope, Astron. Astrophys. Sup. 133, 271–284, 1998.
11. Ivanov, V.P. and O.I. Sharova, Reference spectra in the ‘artificial-moon’ scale and cosmological studies of radio sources, Radiophys. and Quantum Electr. 45, 91–101, 2002.
13. Kutner, M.L. and B.L. Ulich, Recommendations for calibration of millimeter-wave-length spectra line data, Astrophys. J. 250, 341–348, 1981 [Gold, 423].
14. Mangum, J.G., Main-Beam Efficiency Measurements of the Caltech Submillimeter Observatory, Publ. Astron. Soc. Pacific 105, 117–122, 1993.
15. Mangum, J.G., J.W.M. Baars, A. Greve, R. Lucas, R.C. Snel, P. Wallace and M. Holdaway, Evaluation of the ALMA Prototype Antennas, Proc. Astron. Soc. Pacific 118, 1257–1301, 2006.
16. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110–113, 1928.
17. Parker, E.A., Precise measurement of the flux densities of the radio sources Cas A and Cyg A at metre wavelengths, Monthly Notices Roy. Astron. Soc. 138, 407–422, 1968
18. Ruze, J., The effect of aperture errors on the antenna radiation pattern, Suppl. al Nouvo Cimento 9, 364–380, 1952.
19. Ruze, J., Antenna tolerance theory, Proc. IEEE 54, 633–640, 1966 [Gold, 185].
20. Schelkunoff, S.A., Electromagnetic Waves, 363–365, New York, van Nostrand, 1943.Google Scholar
21. Smart, W.M., Spherical Astronomy, Cambridge, University Press, 1962.Google Scholar
22. Stumpff, K., Geographische Ortsbestimmungen, 35, Berlin, VEB Deutscher Verlag de Wissenschaften, 1955.Google Scholar
23. Stumpff, P., Astronomische Pointingtheorie für Radioteleskope, Kleinheubacher Berichte 15, 431–437, 1972.Google Scholar
24. Troitskii, V.S. and N.M. Tseitlin, Application of Radio-astronomical Method for Calibrating small Antenna Systems at centimeter Wavelengths (in Russian), Radiofysika 5, 623–628, 1962.Google Scholar
25. Thompson, A.R., J.M. Moran and G.W. Swenson, Interferometry and Synthesis in Radio Astronomy, 2nd Ed., New York, John Wiley, 2001.
26. Ulich, B.L., Millimeter-wavelength continuum calibration sources, Astron.J. 86, 1619–1626, 1981.
27. Ulich, B.L. and R.W. Haas, Absolute Calibration of Millimeter-wavelength spectral Lines, Astrophys. J. Suppl. 30, 247–258, 1976.
28. Ulich, B.L., J.H. Davis, P.J. Rhodes and J.M. Hollis, Absolute Brightness Temperature Measurements at 3.5-mm Wavelength, IEEE Trans. Antennas Propagat. AP-28, 367–377, 1980 [Gold, 413].
29. Wallace, P.T., Pointing and tracking software for the Gemini 8-m telescopes, Proc. SPIE 2871, 1020, 1997.
30. Wallace, P.T., A rigorous algorithm for telescope pointing, Proc. SPIE 4848, 125, 2002.
31. Welch, W. J. et 36 alii, The Berkeley-Illinois-Maryland-Association Millimeter Array, Publ. Astron. Soc. Pacific 108, 93–103, 1996.
32. Wyllie, D.V., Absolute flux density scale at 408 MHz, Monthly Notices Roy. Astron. Soc. 142, 229–240, 1969.