Measurement of antenna parameters

  • Jacob W.M. Baars
Part of the Astrophysics and Space Science Library book series (ASSL, volume 348)


In Chapter 3 we discussed the mathematical description of the radiation characteristics of the reflector antenna, and we treated the influence of aberrations (defocus situations) and other errors in Ch. 4. In radio astronomy the purpose of the telescope, the reflector antenna in our discussion, is to collect radiation from the celestial source as a function of position on the sky, frequency, polarisation and sometimes time. In order to draw conclusions about the source of radiation, we need to establish the relationship between the parameters describing the physical processes in the source and those of the receiving antenna. Thus we must develop a mathematical formulation for the interaction between the transmitting cosmic radio source (or satellite, etc) and the receiving radio telescope, the reflector antenna discussed sofar. As we have seen earlier, the characteristics of the latter are described by the spatial radiation characteristic, which we have called the antenna pattern. By virtue of the reciprocity theorem the pattern of a transmitting antenna is identical to that of a receiving antenna. (Silver, Ch. 2.13, 1949). We have already introduced terms like main beam and sidelobes of the antenna pattern.


Brightness Temperature Radio Source Angular Size Error Pattern Surface Error 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, Nat. Bureau of Standards, 1964.Google Scholar
  2. Baars, J.W.M., The Measurement of large Antennas with cosmic Radio Sources, IEEE Trans. Antennas Propagat. AP-21, 461–474, 1973 [Gold, 171].CrossRefADSGoogle Scholar
  3. Baars, J.W.M., J.F. van der Brugge, J.L. Casse, J.P. Hamaker, L.H. Sondaar, J.J. Visser and K.J. Wellington, The Synthesis Radio Telescope at Westerbork. Proc IEEE 61, 1258–1266, 1973 [Gold, 116].ADSCrossRefGoogle Scholar
  4. Baars, J.W.M., R. Genzel, I.I.K. Pauliny-Toth and A. Witzel, The Absolute Spectrum of Cas A; An accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106, 1977 [Gold, 401].ADSGoogle Scholar
  5. Bracewell, R., The Fourier Transform and its Applications, New York, McGraw-Hill, 1965.MATHGoogle Scholar
  6. Findlay, J.W., H. Hvatum and W. B., Waltman, An absolute flux density measure-ment of Cassiopeia A at 1440 MHz. Asrophys. J. 141, 873–884, 1965.CrossRefADSGoogle Scholar
  7. Findlay, J.W., Absolute Intensity Calibrations in Radio Astronomy, Ann. Rev. Astron. Astrophys. 4, 77–94, 1966.CrossRefADSGoogle Scholar
  8. Gibson, J., W.J. Welch and Imke de Pater, Accurate jovian radio flux density measurements show ammonia to be subsaturated in the upper troposphere, Icarus 173, 439–446, 2005.CrossRefADSGoogle Scholar
  9. Gordon, M.A., J.W.M. Baars and J. Cocke, Observations of radio lines from unresolved sources: telescope coupling, Doppler effects and cosmological corrections, Astron. Astrophys. 264, 337–344, 1992.ADSGoogle Scholar
  10. Greve, A., C. Kramer and W. Wild, The beam pattern of the IRAM 30-m telescope, Astron. Astrophys. Sup. 133, 271–284, 1998.CrossRefADSGoogle Scholar
  11. Ivanov, V.P. and O.I. Sharova, Reference spectra in the ‘artificial-moon’ scale and cosmological studies of radio sources, Radiophys. and Quantum Electr. 45, 91–101, 2002.CrossRefGoogle Scholar
  12. Kraus, J.D., Radio Astronomy, New York, McGraw-Hill, 1966.Google Scholar
  13. Kutner, M.L. and B.L. Ulich, Recommendations for calibration of millimeter-wave-length spectra line data, Astrophys. J. 250, 341–348, 1981 [Gold, 423].CrossRefADSGoogle Scholar
  14. Mangum, J.G., Main-Beam Efficiency Measurements of the Caltech Submillimeter Observatory, Publ. Astron. Soc. Pacific 105, 117–122, 1993.CrossRefADSGoogle Scholar
  15. Mangum, J.G., J.W.M. Baars, A. Greve, R. Lucas, R.C. Snel, P. Wallace and M. Holdaway, Evaluation of the ALMA Prototype Antennas, Proc. Astron. Soc. Pacific 118, 1257–1301, 2006.CrossRefADSGoogle Scholar
  16. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110–113, 1928.CrossRefADSGoogle Scholar
  17. Parker, E.A., Precise measurement of the flux densities of the radio sources Cas A and Cyg A at metre wavelengths, Monthly Notices Roy. Astron. Soc. 138, 407–422, 1968ADSGoogle Scholar
  18. Ruze, J., The effect of aperture errors on the antenna radiation pattern, Suppl. al Nouvo Cimento 9, 364–380, 1952.CrossRefGoogle Scholar
  19. Ruze, J., Antenna tolerance theory, Proc. IEEE 54, 633–640, 1966 [Gold, 185].CrossRefGoogle Scholar
  20. Schelkunoff, S.A., Electromagnetic Waves, 363–365, New York, van Nostrand, 1943.Google Scholar
  21. Smart, W.M., Spherical Astronomy, Cambridge, University Press, 1962.Google Scholar
  22. Stumpff, K., Geographische Ortsbestimmungen, 35, Berlin, VEB Deutscher Verlag de Wissenschaften, 1955.Google Scholar
  23. Stumpff, P., Astronomische Pointingtheorie für Radioteleskope, Kleinheubacher Berichte 15, 431–437, 1972.Google Scholar
  24. Troitskii, V.S. and N.M. Tseitlin, Application of Radio-astronomical Method for Calibrating small Antenna Systems at centimeter Wavelengths (in Russian), Radiofysika 5, 623–628, 1962.Google Scholar
  25. Thompson, A.R., J.M. Moran and G.W. Swenson, Interferometry and Synthesis in Radio Astronomy, 2nd Ed., New York, John Wiley, 2001.CrossRefGoogle Scholar
  26. Ulich, B.L., Millimeter-wavelength continuum calibration sources, Astron.J. 86, 1619–1626, 1981.CrossRefADSGoogle Scholar
  27. Ulich, B.L. and R.W. Haas, Absolute Calibration of Millimeter-wavelength spectral Lines, Astrophys. J. Suppl. 30, 247–258, 1976.CrossRefADSGoogle Scholar
  28. Ulich, B.L., J.H. Davis, P.J. Rhodes and J.M. Hollis, Absolute Brightness Temperature Measurements at 3.5-mm Wavelength, IEEE Trans. Antennas Propagat. AP-28, 367–377, 1980 [Gold, 413].CrossRefADSGoogle Scholar
  29. Wallace, P.T., Pointing and tracking software for the Gemini 8-m telescopes, Proc. SPIE 2871, 1020, 1997.CrossRefADSGoogle Scholar
  30. Wallace, P.T., A rigorous algorithm for telescope pointing, Proc. SPIE 4848, 125, 2002.CrossRefADSGoogle Scholar
  31. Welch, W. J. et 36 alii, The Berkeley-Illinois-Maryland-Association Millimeter Array, Publ. Astron. Soc. Pacific 108, 93–103, 1996.CrossRefADSGoogle Scholar
  32. Wyllie, D.V., Absolute flux density scale at 408 MHz, Monthly Notices Roy. Astron. Soc. 142, 229–240, 1969.ADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jacob W.M. Baars
    • 1
  1. 1.European Southern ObservatorySwisttal/BonnGermany

Personalised recommendations