Advertisement

Optical Standards and Measurement

  • F. G. Major

The early development of lasers was marked not only by the explosive proliferation of laser oscillation on different atomic and molecular transitions, but also by efforts to stabilize them and narrow their spectral line width. This was driven by the realization that the very attribute that makes the laser so remarkable is the one that still left room for spectacular improvement: spectral purity. The fundamental quantum limit on spectral purity far exceeds that of any common laser subject to fluctuations in its optical cavity. As we saw in the example given in Chapter 14, the theoretical spectral line width of a 1mW laser with a 1m long cavity is on the order of 3 × 10−4 Hz, or a fractional line width of 5 × 10−19!

Keywords

Optical Frequency Frequency Comb Optical Clock Optical Standard Clock Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • F. G. Major
    • 1
  1. 1.USA

Personalised recommendations