Application of Lasers to Microwave Standards

  • F. G. Major

The advent of the laser changed the whole character of atomic frequency/time standards in a number of fundamental respects: from the manipulation of the internal quantum states of the reference particles, to cooling of the center-of-mass motion and prolonged observation of single isolated reference particles. The former application introduced a radical change in the way the cesium clock transition is observed, and the latter made possible, in one revolutionary advance, the realization of the ideal goal that motivated the original pre-laser forays into field suspension of ions, embodied in the Hg+ ion microwave resonance experiment at NASA. That goal was to completely isolate the reference particle from its environment, and to observe its true resonance, free from Doppler shifts and any uncontrolled random perturbations. In this chapter we will touch on the application of lasers to atomic frequency standards in the microwave region of the spectrum, and take up their role as frequency standards in the optical region in later chapters.


Local Oscillator Paul Trap Clock Transition Spectral Line Width Reference Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • F. G. Major
    • 1
  1. 1.USA

Personalised recommendations