Skip to main content

Review of Ionospheric Effects of Solar Wind Magnetosphere Coupling in the Context of the Expanding Contracting Polar Cap Boundary Model

  • Chapter
Solar Dynamics and Its Effects on the Heliosphere and Earth

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 22))

Abstract

This paper reviews the coupling between the solar wind, magnetosphere and ionosphere. The coupling between the solar wind and Earth’s magnetosphere is controlled by the orientation of the Interplanetary Magnetic Field (IMF). When the IMF has a southward component, the coupling is strongest and the ionospheric convection pattern that is generated is a simple twin cell pattern with anti-sunward flow across the polar cap and return, sunward flow at lower latitudes. When the IMF is northward, the ionospheric convection pattern is more complex, involving flow driven by reconnection between the IMF and the tail lobe field, which is sunward in the polar cap near noon. Typically four cells are found when the IMF is northward, and the convection pattern is also more contracted under these conditions. The presence of a strong Y (dawn-dusk) component to the IMF leads to asymmetries in the flow pattern. Reconnection, however, is typically transient in nature both at the dayside magnetopause and in the geomagnetic tail. The transient events at the dayside are referred to as flux transfer events (FTEs), while the substorm process illustrates the transient nature of reconnection in the tail. The transient nature of reconnection lead to the proposal of an alternative model for flow stimulation which is termed the expanding/contracting polar cap boundary model. In this model, the addition to, or removal from, the polar cap of magnetic flux stimulates flow as the polar cap boundary seeks to return to an equilibrium position. The resulting average patterns of flow are therefore a summation of the addition of open flux to the polar cap at the dayside and the removal of flux from the polar cap in the nightside. This paper reviews progress over the last decade in our understanding of ionospheric convection that is driven by transient reconnection such as FTEs as well as by reconnection in the tail during substorms in the context of a simple model of the variation of open magnetic flux. In this model, the polar cap expands when the reconnection rate is higher at the dayside magnetopause than in the tail and contracts when the opposite is the case. By measuring the size of the polar cap, the dynamics of the open flux in the tail can be followed on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, K. B., Rodger, A. S., and Lu, G.: 1997, J. Geophys. Res. 102, 9603.

    Article  ADS  Google Scholar 

  • Borälv, E., Opgenoorth, H. J., Kauristie, K., Lester, M., Bosqued, J.-M., Dewhurst, J. P., et al.: 2005, Ann. Geophysicae 23, 997.

    Article  ADS  Google Scholar 

  • Chisham, G., Freeman, M. P., Coleman, I. J., Pinnock, M., Hairston, M. R., Lester, M., et al.: 2004, Ann. Geophysicae 22, 4243.

    Article  ADS  Google Scholar 

  • Cowley, S. W. H.: 1998, in J. Moen, et al. (eds.), Polar Cap Boundary Phenomena, pp. 127–140. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Cowley, S. W. H., and Lockwood, M.: 1992, Ann. Geophysicae 10, 103.

    ADS  Google Scholar 

  • Cowley, S. W. H., Morelli, J. P., and Lockwood, M.: 1991, J. Geophys. Res. 96, 5557.

    Article  ADS  Google Scholar 

  • Davies, J. A., Yeoman, T. K., Rae, I. J., Milan, S. E., Lester, M., Lockwood, M., et al.: 2002, Ann. Geophysicae 20, 781.

    Article  ADS  Google Scholar 

  • Dungey, J. W.: 1961, Phys. Res. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Dungey, J. W.: 1963, in C. DeWitt, J. Hiebolt, and A. Lebeau (eds.), Geophysics: The Earths Environment, pp. 526–535. Gordon and Breach, Newark, NJ.

    Google Scholar 

  • Elphic, R. C., Lockwood, M., Cowley, S. W. H., and Sandholt, P. E.: 1990, Geophys. Res. Lett. 17, 2241.

    Article  ADS  Google Scholar 

  • Frank, L. A., Sigwarth, J. B., Craven, J. D., Cravens, J. P., Dolan, J. S., Dvorsky, M. R., et al.: 1995, Space Sci. Rev. 71, 297.

    Article  ADS  Google Scholar 

  • Freeman, M. P., and Southwood, D. J.: 1988, Planet. Space Sci. 36, 509.

    Article  ADS  Google Scholar 

  • Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., et al.: 1995, Space Sci. Rev. 71, 761.

    Article  ADS  Google Scholar 

  • Grocott, A., Cowley, S. W. H., Sigwarth, J. B., Watermann, J. F., and Yeoman, T. K.: 2002, Ann. Geophysicae 20, 1577.

    Article  ADS  Google Scholar 

  • Grocott, A., Yeoman, T. K., Nakamura, R., Cowley, S. W. H., Frey, H. U., Reme, H., et al.: 2004, Ann. Geophysicae 22, 1061.

    Article  ADS  Google Scholar 

  • Haerendel, G., Paschmann, G., Sckopke, N., Rossenbauer, H., and Hedgecock, P. C.: 1978, J. Geophys. Res. 83, 3195.

    Article  ADS  Google Scholar 

  • Heppner, J. P., and Maynard, N. C.: 1987, J. Geophys. Res. 92, 4467.

    Article  ADS  Google Scholar 

  • Imber, S. M., Milan, S. E., and Hubert, B.: 2006, Ann. Geophys. 24, 3115.

    Article  ADS  Google Scholar 

  • Lockwood, M.: 1998, in J. Moen, A. Egeland, and M. Lockwood (eds.), Identifying the Open-Closed Field Line Boundary, Polar Cap Boundary Phenomena, pp. 73–90. Kluwer Academic Publishing, Netherlands.

    Google Scholar 

  • McWilliams, K. A., Yeoman, T. K., and Provan, G.: 2000, Ann. Geophysicae 18, 445.

    Article  ADS  Google Scholar 

  • Mende, S. B., Heetderks, H., Frey, H. U., et al.: 2000, Space Sci. Rev. 91, 243.

    Article  ADS  Google Scholar 

  • Mende, S. B., Carlson, C.W., Frey, H. U., Peticolas, L. M., and Ă˜stgaard, N.: 2003, J. Geophys. Res. 108(A9), 1344, doi: 10.1029/2002JA009787.

    Article  Google Scholar 

  • Milan, S. E., Lester, M., Cowley, S. W. H., and Brittnacher, M.: 2000, J. Geophys. Res. 105, 15741.

    Article  ADS  Google Scholar 

  • Milan, S. E., Lester, M., Cowley, S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., et al.: 2003, Ann. Geophysicae 21, 1121.

    Article  ADS  Google Scholar 

  • Milan, S. E., Wild, J. A., Grocott, A., and Draper, N. C.: 2006, Adv. Space Res. 38, 1671.

    Article  ADS  Google Scholar 

  • Nakamura, R.: 2006, Substorms and their solar wind causes. Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9131-9.

    Google Scholar 

  • Neudegg, D. A., Yeoman, T. K., Cowley, S.W. H., Provan, G., Haerendel, G., Baumjohann, W., et al.: 1999, Ann. Geophysicae 17, 707.

    Article  ADS  Google Scholar 

  • Neudegg, D. A., Cowley, S. W. H., Milan, S. E., Yeoman, T. K., Lester, M., Provan, G., et al.: 2000, Ann. Geophysicae 18, 416.

    Article  ADS  Google Scholar 

  • Neudegg, D. A., Cowley, S.W. H., McWilliams, K. A., Lester, M., Yeoman, T. K., Sigwarth, J., et al.: 2001, Ann. Geophysicae 19, 179.

    Article  ADS  Google Scholar 

  • Pinnock, M., Rodger, A. S., Dudeney, J. R., Baker, K. B., Newell, P. T., Greenwald, R. A., et al.: 1993, J. Geophys. Res. 98, 3767.

    Article  ADS  Google Scholar 

  • Provan, G., Yeoman, T. K., and Milan, S. E.: 1998, Ann. Geophysicae 16, 1411.

    Article  ADS  Google Scholar 

  • Provan, G., Lester, M., Mende, S. B., and Milan, S. E.: 2004, Ann. Geophysicae 22, 3607.

    Article  ADS  Google Scholar 

  • Rishbeth, H., and Garriott, O.: 1969, Introduction to Ionospheric Physics. Academic Press, London.

    Google Scholar 

  • Ruohoniemi, J. M., and Baker, K. B.: 1998, J. Geophys. Res. 103, 20797.

    Article  ADS  Google Scholar 

  • Russell, C. T.: 1972, in E. R. Dyer (ed.), Critical Problems of Magnetospheric Physics, pp. 1–16. Inter Union Committee on STP, National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Russell, C. T., and Elphic, R. C.: 1978, Space Sci. Rev. 22, 681.

    Article  ADS  Google Scholar 

  • Russell, C. T., and Elphic, R. C.: 1979, Geophys. Res. Lett. 6, 33.

    Article  ADS  Google Scholar 

  • Schunk, R. W., and Nagy, A. F.: 2000, Ionosphere — Physics, Plasma Physics and Chemistry. CUP, Cambridge.

    Book  Google Scholar 

  • Siscoe, G., and Huang, T. S.: 1985, J. Geophys. Res. 90, 543.

    Article  ADS  Google Scholar 

  • Torr, M. R., Torr, D. G., Zukic, M., Johnson, R. B., Ajello, J., Banks, P., et al.: 1995, Space Sci. Rev. 71, 329.

    Article  ADS  Google Scholar 

  • Wild, J. A., Cowley, S. W. H., Davies, J. A., Khan, H., Lester, M., Milan, S. E., et al.: 2001, Ann. Geophysicae 19, 1491.

    Article  ADS  Google Scholar 

  • Wild, J. A., Milan, S. E., Cowley, S.W. H., Dunlop, M.W., Owen, C. J., Bosqued, J. M., et al.: 2003, Ann. Geophysicae 21, 1807.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lester, M., Milan, S.E., Provan, G., Wild, J.A. (2007). Review of Ionospheric Effects of Solar Wind Magnetosphere Coupling in the Context of the Expanding Contracting Polar Cap Boundary Model. In: Baker, D.N., Klecker, B., Schwartz, S.J., Schwenn, R., Von Steiger, R. (eds) Solar Dynamics and Its Effects on the Heliosphere and Earth. Space Sciences Series of ISSI, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69532-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69532-7_9

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-69531-0

  • Online ISBN: 978-0-387-69532-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics