Inferring the Origin of the Genetic Code

  • Maria Luisa Chiusano
  • Luigi Frusciante
  • Gerardo Toraldo
Part of the Springer Optimization and Its Applications book series (SOIA, volume 7)


The extensive production of data concerning structural and functional aspects of molecules of fundamental biological interest during the last 30 years, mainly due to the rapid evolving of biotechnologies as well as to the accomplishment of the Genome Projects, has led to the need to adopt appropriate computational approaches for data storage, manipulation and analyses, giving space to fast evolving areas of biology: Computational Biology and Bioinformatics. The design of suitable computational methods and adequate models is nowadays fundamental for the management and mining of the data. Indeed, such approaches and their results might have strong impact on our knowledge of biological systems. Here we discuss the advantages of novel methodologies to building data warehouses where data collections on different aspects of biological molecules are integrated. Indeed, when considered as a whole, biological data can reveal hidden features which may provide further information in open discussions of general interest in biology.


Secondary Structure Genetic Code Codon Position Synonymous Codon Protein Secondary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.A. Adzhubei, A.A. Adzhubei, and S. Neidle. An Integrated Sequence-Structure Database incorporating matching mRNA sequence, amino acid sequence and protein three-dimensional structure data. Nucleic Acids Research, 26: 327–331, 1998.PubMedCrossRefGoogle Scholar
  2. 2.
    R. Apweiler, M.J. Martin, C. O’Donovan, and M. Pruess. Managing core resources for genomics and proteomics. Pharmacogenomics, 4(3): 343–350, 2003.PubMedCrossRefGoogle Scholar
  3. 3.
    I. Bahar, M. Kaplan, and R.L. Jernigan. Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches. Proteins, 29: 292–308, 1997.PubMedCrossRefGoogle Scholar
  4. 4.
    R. Balasubramanian, P. Seetharamulu, and G. Raghunathan. A conformational rational for the origin of the mechanism of nucleic acid-directed protein synthesis of living organisms. Origins Life, 10: 15–30, 1980.CrossRefGoogle Scholar
  5. 5.
    H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28: 235–242, 2000.PubMedCrossRefGoogle Scholar
  6. 6.
    G. Bernardi and G. Bernardi. Compositional constraints and genome evolution. Journal of Molecular Evolution, 24(1–2): 1–11, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    P. Bertone and M. Gerstein. Integrative data mining: the new direction in bioinformatics. IEEE Engineering in Medicine and Biology Magazine: The Quarterly Magazine of the Engineering in Medicine & Biology Society, 20(4): 33–40, 2001.CrossRefGoogle Scholar
  8. 8.
    E. Birney, D. Andrews, P. Bevan, M. Caccamo, G. Cameron, Y. Chen, L. Clarke, G. Coates, T. Cox, J. Cuff, V. Curwen, T. Cutts, T. Down, R. Durbin, E. Eyras, X.M. Fernandez-Suarez, P. Gane, B. Gibbins, J. Gilbert, M. Hammond, H. Hotz, V. Iyer, A. Kahari, K. Jekosch, A. Kasprzyk, D. Keefe, S. Keenan, H. Lehvaslaiho, G. McVicker, C. Melsopp, P. Meidl, E. Mongin, R. Pettett, S. Potter, G. Proctor, M. Rae, S. Searle, G. Slater, D. Smedley, J. Smith, W. Spooner, A. Stabenau, J. Stalker, R. Storey, A. Ureta-Vidal, C. Woodwark, M. Clamp, and T. Hubbard. Ensembl 2004. Nucleic Acids Research, Database Issue: 468–470, 2004.Google Scholar
  9. 9.
    S. Black. A theory on the origin of life. Advances in Enzymology, 38: 193–234, 1973.CrossRefGoogle Scholar
  10. 10.
    S. Black. Prebiotic 5-substituted uracils and a primitive genetic code. Science, 268: 1832, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    S. Bottomley. Bioinformatics: smartest software is still just a tool. Nature, 429: 241, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    A. Brack, L.E. Orgel. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature, 256(5516): 383–387, 1975.PubMedCrossRefGoogle Scholar
  13. 13.
    T.A. Brown. Genomes. Second Edition, BIOS Scientific Publishers, Oxford, 2002.Google Scholar
  14. 14.
    S. Buckingham. Bioinformatics: Data’s future shock. Nature, 428: 774–777, 2004.CrossRefGoogle Scholar
  15. 15.
    J. Chen, P. Zhao, D. Massaro, L.B. Clerch, R.R. Almon, D.C. DuBois, W.J. Jusko, and E.P. Hoffman. The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface. Nucleic Acids Research, 32, Database Issue: 578–581, 2004.CrossRefGoogle Scholar
  16. 16.
    T.P. Chirpich. Rates of protein evolution: A function of amino acid composition. Science, 188: 1022–1023, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    M. Chicurel. Bioinformatics: bringing it all together. Nature, 419: 751–755, 2002.Google Scholar
  18. 18.
    M.L. Chiusano, G. D’Onofrio, F. Alvarez-Valin, K. Jabbari, G. Colonna, and G. Bernardi. Correlations of nucleotide substitution rates and base composition of mammalian coding sequences with protein structure. Gene, 238(1): 23–31, 1999.PubMedCrossRefGoogle Scholar
  19. 19.
    M.L. Chiusano, F. Alvarez-Valin, M. Di Giulio, G. D’Onofrio, G. Ammirato, G. Colonna, and G. Bernardi. Second codon positions of genes and the secondary structures of proteins. Relationships and implications for the origin of the genetic code. Gene, 261(1): 63–69, 2000.PubMedCrossRefGoogle Scholar
  20. 20.
    M.L. Chiusano. Implementation and Application of Computational Methods for the Analysis of Nucleic Acids and Proteins. Ph.D. thesis, 2000.Google Scholar
  21. 21.
    M.L. Chiusano, L. Frappat, P. Sorba, and A. Sciarrino. Codon usage correlations and Crystal Basis Model of the Genetic Code. Europhysics Letters, 55(2): 287–293, 2001.CrossRefGoogle Scholar
  22. 22.
    M.L. Chiusano, T. Gojobori, and G. Toraldo. A C++ Computational Environment for Biomolecular Sequence Management. Computational Management Science, 2(3): 165–180, 2005.CrossRefGoogle Scholar
  23. 23.
    P.Y. Chou and G.D. Fasman. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry, 13(2): 211–222, 1974.PubMedCrossRefGoogle Scholar
  24. 24.
    D.A. Cook. The relation between amino acid sequence and protein conformation. Journal of Molecular Biology, 29: 167–71, 1967.PubMedCrossRefGoogle Scholar
  25. 25.
    A.J. Cuticchia and G.W. Silk. Bioinformatics needs a software archive. Nature, 429: 241, 2004.PubMedCrossRefGoogle Scholar
  26. 26.
    G. Delia Vedova and R. Dondi. A library of efficient bioinformatics algorithms. Applied Bioinformatics, 2(2): 117–121, 2003.Google Scholar
  27. 27.
    G. Dennis Jr., B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, and R.A. Lempicki. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology, 4(5): 3, 2003.CrossRefGoogle Scholar
  28. 28.
    G. Deleage and B. Roux. An algorithm for protein secondary structure prediction based on class prediction. Protein Engineering, 1(4): 289–294, 1987.PubMedCrossRefGoogle Scholar
  29. 29.
    M. Di Giulio. The beta-sheets of proteins, the biosynthetic relationships between amino acids, and the origin of the genetic code. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life, 26: 589–609, 1996.CrossRefGoogle Scholar
  30. 30.
    M. Di Giulio. On the origin of the genetic code. Journal of Theoretical Biology, 187: 573–581, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    L.S. Dillon. Origins of genetic code. The Botanical Review, 39: 301–345, 1973.CrossRefGoogle Scholar
  32. 32.
    P. Dunnill. Triplet nucleotide-amino-acid pairing; a stereochemical basis for the division between protein and non-protein amino-acids. Nature, 215: 355–359, 1966.Google Scholar
  33. 33.
    C.J. Epstein. Role of the amino-acid “code” and of selection for conformation in the evolution of proteins. Nature, 210(31): 25–28, 1966.PubMedCrossRefGoogle Scholar
  34. 34.
    A. Facchiano, P. Stiuso, M.L. Chiusano, M. Caraglia, G. Giuberti, M. Marra, A. Abbruzzese, and G. Colonna. Homology modelling of the human eukaryotic initiation factor 5A (eIF-5A). Protein Engineering, 14: 11–12, 2001.Google Scholar
  35. 35.
    W.M. Fitch. An improved method of testing for evolutionary homology Journal of Molecular Biology, 16: 9–16, 1966.PubMedGoogle Scholar
  36. 36.
    W.M. Fitch and K. Upper. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harbor Symposia on Quantitative Biology, 52: 759–767, 1987.PubMedGoogle Scholar
  37. 37.
    G. Gamow. Possible Relation between Deoxyribonucleic Acid and Protein Structures. Nature, 173: 318, 1954.CrossRefGoogle Scholar
  38. 38.
    C. Geourjon and G. Deleage. SOPM: A self-optimized method for protein secondary structure prediction. Protein Engineering, 7(2): 157–164, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    C. Geourjon and G. Deleage. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6): 681–684, 1995.PubMedGoogle Scholar
  40. 40.
    J.F. Gibrat, J. Gamier, and B. Robson. Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. Journal of Molecular Biology, 198(3): 425–443, 1987.PubMedCrossRefGoogle Scholar
  41. 41.
    J. Glasgow, I. Jurisica, and R. Ng. Data mining and knowledge discovery in molecular databases. Pacific Symposium on Biocomputing, 12: 365–366, 2000.PubMedGoogle Scholar
  42. 42.
    A. Goesmann, B. Linke, O. Rupp, L. Krause, D. Bartels, M. Dondrup, A.C. McHardy, A. Wilke, A. Puhler, and F. Meyer. Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems biology. Journal of Biotechnology, 106(2–3): 157–167, 2003.PubMedCrossRefGoogle Scholar
  43. 43.
    D.E. Goldsack. Relation of amino acid composition and the Moffitt parameters to the secondary structure of proteins. Biopolymers, 7: 299–313, 1969.PubMedCrossRefGoogle Scholar
  44. 44.
    D.L. Gonzalez. Can the genetic code be mathematically described? Medical Science Monitor, 10(4): HY11–17, 2004.PubMedGoogle Scholar
  45. 45.
    M. Goodman and G.W. Moore. Use of Chou-Fasman amino acid conformational parameters to analyze the organization of the genetic code and to construct protein genealogies. Journal of Molecular Evolution, 10: 7–47, 1977.PubMedCrossRefGoogle Scholar
  46. 46.
    R. Grantham. Composition drift in the cytochrome c cistron. Nature, 248(5451): 791–793, 1974.PubMedCrossRefGoogle Scholar
  47. 47.
    S.K. Gupta, S. Majumdar, T.K. Bhattacharya, and T.C. Ghosh. Studies on the relationships between the synonymous codon usage and protein secondary structural units. Biochemical and Biophysical Research Communications, 269(3): 692–696, 2000.PubMedCrossRefGoogle Scholar
  48. 48.
    A.V. Guzzo. The influence of amino-acid sequence on protein structure. Biophysical Journal, 5: 809–822, 1965.PubMedGoogle Scholar
  49. 49.
    H. Hartman. Speculations on the origin of the genetic code. Journal of Molecular Evolution, 40: 541–544, 1995.PubMedCrossRefGoogle Scholar
  50. 50.
    B.H. Havsteen. Time-dependent control of metabolic systems by external effectors. Journal of Theoretical Biology, 10: 1–10, 1996.CrossRefGoogle Scholar
  51. 51.
    L.B. Hendry, E.D. Bransome Jr., M.S. Hutson, and L.K. Campbell. First approximation of a stereochemical rationale for the genetic code based on the topography and physicochemical properties of “cavities” constructed from models of DNA. Proceedings of the National Academy of Sciences, 78: 7440–7444, 1981.CrossRefGoogle Scholar
  52. 52.
    L. Huminiecki, A.T. Lloyd, K.H. Wolfe. Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases. BMC Genomics, 4(1): 31, 2003.PubMedCrossRefGoogle Scholar
  53. 53.
    J.R. Jungck. The genetic code as a periodic table. Journal of Molecular Evolution, 11(3): 211–224, 1978.PubMedCrossRefGoogle Scholar
  54. 54.
    J. Jurka and T.F. Smith. Beta turns in early evolution: chirality, genetic code, and biosynthetic pathways. Cold Spring Harbor Symposia on Quantitative Biology, 52: 407–410, 1987.PubMedGoogle Scholar
  55. 55.
    J. Jurka and T.F. Smith. Beta-turn-driven early evolution: the genetic code and biosynthetic pathways. Journal of Molecular Evolution, 25(1): 15–19, 1987.PubMedCrossRefGoogle Scholar
  56. 56.
    I. Jurisica and D.A. Wigle. Understanding biology through intelligent systems. Genome Biology, 3(11): 4036, 2002.CrossRefGoogle Scholar
  57. 57.
    P. Janssen, A.J. Enright, B. Audit, I. Cases, L. Goldovsky, N. Harte, V. Kunin, and C.A. Ouzounis. COmplete GENome Tracking (COGENT): A flexible data environment for computational genomics. Bioinformatics, 19(11): 1451–2, 2003.PubMedCrossRefGoogle Scholar
  58. 58.
    W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22: 2577–637, 1983.PubMedCrossRefGoogle Scholar
  59. 59.
    P. Kemmeren and F.C. Holstege. Integrating functional genomics data. Biochemical Society Transactions, 31: 1484–1487, 2003.PubMedGoogle Scholar
  60. 60.
    J. Kohler, S. Philippi, and M. Lange. SEMEDA: Ontology based semantic integration of biological databases. Bioinformatics, 19(18): 2420–2427, 2003.PubMedCrossRefGoogle Scholar
  61. 61.
    J. Kyte and R.F. Doolittle. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157: 105–32, 1982.PubMedCrossRefGoogle Scholar
  62. 62.
    J.C. Lacey Jr., N.S. Wickramasinghe, and G.W. Cook. Experimental studies on the origin of the genetic code and the process of protein synthesis: a review update. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life, 22(5): 243–275, 1992.CrossRefGoogle Scholar
  63. 63.
    J.M. Levin, B. Robson, and J. Gamier. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Letters, 205(2): 303–308, 1986.PubMedCrossRefGoogle Scholar
  64. 64.
    M. Levitt. Conformational preferences of amino acids in globular proteins. Biochemistry, 17: 4277–85, 1978.PubMedCrossRefGoogle Scholar
  65. 65.
    D.I. Marlborough. Early Assignments of the Genetic Code Dependent upon Protein Structure. Origins Life, 10: 3–14, 1980.CrossRefGoogle Scholar
  66. 66.
    G. Melcher. Stereospecificity of the genetic code. Journal of Molecular Evolution, 3: 121–141, 1974.PubMedCrossRefGoogle Scholar
  67. 67.
    A. Nantel. Visualizing biological complexity. Pharmacogenomics, 4(6): 697–700, 2003.PubMedCrossRefGoogle Scholar
  68. 68.
    G.L. Nelsestuen. Amino acid-directed nucleic acid synthesis. A possible mechanism in the origin of life. Journal of Molecular Evolution, 11: 109–120, 1978.PubMedCrossRefGoogle Scholar
  69. 69.
    M.W. Nirenberg and J.H. Matthei. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, 47: 1588, 1961.CrossRefGoogle Scholar
  70. 70.
    M.W. Nirenberg, O.W. Jones, P. Leder, B.F.C. Clark, W.S. Sly, and S. Petska. On the coding of genetic information. Cold Spring Harbor Symposia on Quantitative Biology, 28: 549–557, 1963.Google Scholar
  71. 71.
    T. Okayama, T. Tamura, T. Gojobori, Y. Tateno, K. Ikeo, S. Miyazaki, K. Fukami-Kobayashi, and H. Sugawara. Formal design and implementation of an improved DDBJ DNA database with a new schema and object-oriented library. Bioinformatics, 14(6): 472–478, 1998.PubMedCrossRefGoogle Scholar
  72. 72.
    L.E. Orgel. A possible step in the origin of the genetic code. Israel Journal of Chemistry, 10: 287–292, 1972.Google Scholar
  73. 73.
    L.E. Orgel. Prebiotic Polynucleotides and Polypeptides. Israel Journal of Chemistry, 14: 11–16, 1975.Google Scholar
  74. 74.
    L.E. Orgel. The Organization and Expression of the Eukaryotic Genome. Proceedings of the International Symposium, Academic Press, London, 1977.Google Scholar
  75. 75.
    Z.M. Ozsoyoglu, J.H. Nadeau, G. Ozsoyoglu. Pathways database system. OMICS: A Journal of Integrative Biology, 7(1): 123–125, 2003.CrossRefGoogle Scholar
  76. 76.
    J. Papin and S. Subramaniam. Bioinformatics and cellular signaling. Current Opinion in Biotechnology, 15(1): 78–81, 2004.PubMedCrossRefGoogle Scholar
  77. 77.
    L. Pauling and M. Delbruk. The Nature of the intermolecular forces operative in biological processes. Science, 92: 77–79, 1950.CrossRefGoogle Scholar
  78. 78.
    S.R. Pelc. Correlation between coding-triplets and amino-acids. Nature, 207: 597–599, 1965.PubMedCrossRefGoogle Scholar
  79. 79.
    S.R. Pelc and M.G.E. Welton. Stereochemical relationship between coding triplets and amino-acids. Nature, 209: 868–870, 1966.PubMedCrossRefGoogle Scholar
  80. 80.
    S. Philippi. Light-weight integration of molecular biological databases. Bioinformatics, 20(1): 51–57, 2004.PubMedCrossRefGoogle Scholar
  81. 81.
    N. Potenza, R. Del Gaudio, M.L. Chiusano, G.M.R. Russo, and G. Geraci. Cloning and molecular characterization of the first innexin of the phylum annelida-expression of the gene during development. Journal of Molecular Evolution, 57(1): 165–173, 2002.Google Scholar
  82. 82.
    J.W. Prothero. Correlation between the distribution of amino acids and alpha helices. Biophysical Journal, 6: 367–70, 1966.PubMedCrossRefGoogle Scholar
  83. 83.
    S. Rajasekaran, H. Nick, P.M. Pardalos, S. Sahni, and G. Shaw. Efficient Algorithms for Local Alignment Search. Journal of Combinatorial Optimization, 5: 117–124, 2001.CrossRefGoogle Scholar
  84. 84.
    S. Rajasekaran, Y. Hu, J. Luo, H. Nick, P.M. Pardalos, S. Sahni, and S. Shaw. Efficient Algorithms for Similarity Search. Journal of Combinatorial Optimization, 5: 125–132, 2001.CrossRefGoogle Scholar
  85. 85.
    R.B. Russell. Genomics, proteomics and bioinformatics: all in the same boat. Genome Biology, 3(10): reports 4034.1-4034.2, 2002.Google Scholar
  86. 86.
    F.R. Salemme, M.D. Miller, and S.R. Jordan. Structural convergence during protein evolution. Proceedings of the National Academy of Sciences, 74: 2820–2824, 1977.CrossRefGoogle Scholar
  87. 87.
    C.W. Schmidt. Data explosion: bringing order to chaos with bioinformatics. Environmental Health Perspectives, 111(6): A340–5, 2003.PubMedGoogle Scholar
  88. 88.
    P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498–504, 2003.PubMedCrossRefGoogle Scholar
  89. 89.
    G. Sherlock and C.A. Ball. Microarray databases: storage and retrieval of microarray data. Methods in Molecular Biology, 224: 235–48, 2003.PubMedGoogle Scholar
  90. 90.
    M. Shimizu. Specific aminoacylation of C4N hairpin RNAs with the cognate aminoacyl-adenylates in the presence of a dipeptide: origin of the genetic code. The Journal of Biochemistry, 117: 23–26, 1995.Google Scholar
  91. 91.
    M. Sjostrom and S. Wold. A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids. Journal of Molecular Evolution, 22: 272–277, 1985.PubMedCrossRefGoogle Scholar
  92. 92.
    T.M. Sonneborn. Degeneracy of the genetic code: Extent, nature and genetic implication. In V. Bryson and H. Vogel, editors, Evolving Genes and Proteins, pages 377–397. Academic Press, New York, 1965.Google Scholar
  93. 93.
    L. Stein. Creating a bioinformatics nation. Nature, 417: 119–120, 2002.PubMedCrossRefGoogle Scholar
  94. 94.
    A.G. Szent-Gyotgyi and C. Cohen. Role of proline in polypeptide chain configuration of proteins. Science, 126: 697, 1957.CrossRefGoogle Scholar
  95. 95.
    N. Tolstrup, J. Toftgard, J. Engelbrecht, and S. Brunak. Neural network model of the genetic code is strongly correlated to the GES scale of amino acid transfer free energies. Journal of Molecular Biology, 243: 816–820, 1994.PubMedCrossRefGoogle Scholar
  96. 96.
    F.J. Taylor and D. Coates. The code within the codons. Biosystems, 22: 177–187, 1989.PubMedCrossRefGoogle Scholar
  97. 97.
    G. Von Heijne, C. Blomberg, and H. Baltscheffsky. Early Evolution of Cellular Electron Transport: Molecular Models for the Ferredoxin-Rubredoxin-Flavodoxin Region. Origins Life, 9: 27–37, 1978.CrossRefGoogle Scholar
  98. 98.
    A.L. Weber and J.C. Jr. Lacey. Genetic code correlations: Amino acids and their anticodon nucleotides. Journal of Molecular Evolution, 11(3): 199–210, 1978.PubMedCrossRefGoogle Scholar
  99. 99.
    M.G.E. Welton and S.R. Pelc. Specificity of the stereochemical relationship between ribonucleic acid-triplets and amino-acids. Nature, 209: 870–872, 1966.PubMedCrossRefGoogle Scholar
  100. 100.
    C.R. Woese. On the evolution of the genetic code. Proceedings of the National Academy of Sciences, 54: 1546–1552, 1965.CrossRefGoogle Scholar
  101. 101.
    C.R. Woese, D.H. Dugre, S.A. Dugre, M. Kondo, and W.C. Saxinger. On the fundamental nature and evolution of the genetic code. Cold Spring Harbor Symposia on Quantitative Biology, 31: 723–736, 1966PubMedGoogle Scholar
  102. 102.
    C.R. Woese. The Genetic Code. Harper and Row, New York, 1967.Google Scholar
  103. 103.
    R.V. Wolfenden, P.M. Cullis, and C.C. Southgate. Water, protein folding, and the genetic code. Science, 206: 575–7, 1979.PubMedCrossRefGoogle Scholar
  104. 104.
    J.T. Wong. A co-evolution theory of the genetic code. Proceedings of the National Academy of Sciences, 72: 1909–1912, 1975.CrossRefGoogle Scholar
  105. 105.
    J.T. Wong. Evolution of the genetic code. Microbiological Sciences, 5: 174–181, 1988.PubMedGoogle Scholar
  106. 106.
    M. Yarus. A specific amino acid binding site composed of RNA. Science, 240: 1751–1758, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maria Luisa Chiusano
    • 1
  • Luigi Frusciante
    • 2
  • Gerardo Toraldo
    • 3
  1. 1.Department of Genetics, General and Molecular BiologyUniversity of Naples “Federico II”NaplesItaly
  2. 2.Department of Soil, Plant and Environmental Sciences (DISSPA)University of Naples “Federico II”PorticiItaly
  3. 3.Department of Agricultural EngineeringUniversity of Naples “Federico II”PorticiItaly

Personalised recommendations