Clinical Analysis of the Diagnostic Classification of Geriatric Disorders

  • Giacomo Patrizi
  • Gregorio Patrizi
  • Luigi Di Cioccio
  • Claudia Bauco
Part of the Springer Optimization and Its Applications book series (SOIA, volume 7)


The aim of this chapter is to present a classification algorithm and its application to an initial set of 156 patients afflicted with dementia syndromes and classified by clinicians in the categories of probable Alzheimer, possible Alzheimer or vascular dementia pathologies. It will be shown that the diagnoses of dementia patients by this method is very accurate, and that the classification criteria can be transformed into suitable clinical factors, which can then be interpreted by clinicians. This formal implementation suggests that recent research on the general diagnosis of dementia can be confirmed.


Linear Discriminant Analysis Diagnostic Classification Vascular Dementia Clinical Analysis Alport Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Amaducci, M. Falcini, and A. Lippi. Descriptive epidemology and risk factors for Alzheimer’s disease. Acta Neurologica Scandinavica (Supplementum), 139:21, 1992.CrossRefGoogle Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edition, American Psychiatric Association, Washington, DC, 1994.Google Scholar
  3. 3.
    A. C. Atkinson and A. N. Donev. Optimum, Experimental Design. Clarendon Press, Oxford, 1992.Google Scholar
  4. 4.
    L. Berg, D. W. McKeel Jr, J. P. Miller, M. Storandt, E. H. Rubin, J. C. Morris, J. Baty, M. Coats, J. Norton, A. M. Goate, J. L. Price, M. Gearing, S. S. Mirra, and A. M. Saunders. Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein e genotype. Archives of Neurology, 55:326–335, 1998.PubMedCrossRefGoogle Scholar
  5. 5.
    L. M. Bierer, P. R. Holf, and D. P. Purohit. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Archives of Neurology, 52:81–88, 1995.PubMedGoogle Scholar
  6. 6.
    G. Bonifazi, P. Massacci, L. Nieddu, and G. Patrizi. The classification of industrial sand-ores by image recognition methods. In Proceedings of 13th International Conference on Pattern Recognition Systems, vol.4’ Parallel and Connectionist Systems, pages 174–179, Los Alamitos, CA, 1996. IEEE Computer Society Press.Google Scholar
  7. 7.
    J. V. Bowler, D. G. Munoz, H. Merksey, and V. Hachinski. Fallacies in the pathological confirmation of the diagnosis of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 64:18–24, 1998.CrossRefGoogle Scholar
  8. 8.
    H. Braak and E. Braak. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiology of Aging, 18:85–88, 1997.CrossRefGoogle Scholar
  9. 9.
    W. G. Cochran and G. M. Cox. Experimental Designs. 2nd edition, Wiley, New York, 1957.Google Scholar
  10. 10.
    J. L. Cummings. Current perspectives in Alzheimer’s disease. Neurology, 51:1–8, 1998.CrossRefGoogle Scholar
  11. 11.
    D. W. Desmond. Vascular dementia. Clinical Neuroscience Research, 3:437–448, 2004.CrossRefGoogle Scholar
  12. 12.
    D. W. Desmond, T. Erkinjuntti, M. Sano, J. L. Cummings, J. V. Bowler, F. Pasquier, J. T. Moroney, S. H. Ferris, Y. Stern, P. S. Sachdev, and V. C. Hachinski. The cognitive syndrome of vascular dementia: implications for clinical trials. Alzheimer Disease and Associated Disorders, 13(Suppl. 3):s21–s29, 1999.PubMedGoogle Scholar
  13. 13.
    R. O. Duda and P. E. Hart. Pattern Recognition and Scene Analysis. Wiley, New York, 1973.Google Scholar
  14. 14.
    O. Firschlein and M. Fischler. Automatic subclass determination for pattern recognition applications. IEEE Transactions on Electronic Computers, 12:137–141, 1963.CrossRefGoogle Scholar
  15. 15.
    G. B. Frisoni. Diagnosi e Terapia della Malattia di Alzheimer: Un Percorso per le Unità di Valutazione Alzheimer. IRCCS San Giovanni di Dio-Fatebenefratelli, Brescia, Italy, 2001.Google Scholar
  16. 16.
    M. Gearing, S. S. Mirra, J. C. Hedreen, S. M. Sumi, L. A. Hansen, and A. Heyman. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part X: Neuropathology confirmation of the clinical diagnosis of Alzheimer’s disease. Neurology, 45:461–466, 1995.PubMedGoogle Scholar
  17. 17.
    T. Gomez-Lima, R. Hollister, H. West, S. Mui, and J.H. Growdon. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Annals of Neurology, 1:17–24, 1997.CrossRefGoogle Scholar
  18. 18.
    R. C. Hamdy. Featured cme topic: Dementia, fact sheet. Sothern Medical Journal, 94:673–677, 2001.Google Scholar
  19. 19.
    E. Helmes, J. V. Bowler, H. Merskey, D. D. Munoz, and V. C. Hachinski. Rates of cognitive decline in Alzheimer’s disease and dementia with lewy bodies. Dementia and Geriatric Cognitive Disorders, 15:67–71, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    A. Heyman, G. G. Fillenbaum, K. A. Welsh-Bohmer, M. Gearing, S. S. Mirra, R. C. Mohs, B. L. Peterson, and C. F. Pieper. Cerebral infarcts in patients with autopsy-proven Alzheimer’s disease, CERAD Part XVIII. Neurology, 51:159–162, 1998.PubMedGoogle Scholar
  21. 21.
    E. Hogervorst, S. Bandelow, M. Combrinck, S. Irani, and A. D. Smith. The validity and reliability of 6 sets of clinical criteria to classify Alzheimer’s disease and vascular dementia in cases confirmed post-mortem: added value of a decision tree approach. Dementia and Geriatric Cognitive Disorders, 16:170–180, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    E. Hogervorst, L. Barnetson, K. A. Jobst, Zs. Nagy, and M. Combrinck and A. D. Smith. Diagnosing dementia: interrater reliability assessment and accuracy of the nincds/adrda criteria versus CERAD histopathological criteria for Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 11:107–113, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    S. Holroyd and M. L. Shepherd. Alzheimers’s disease: A review for the ophthalmologist. Survey of Ophthalmology, 45(6):516–524, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    M. Kendall, A. Stuart, and J. K. Ord. The Advanced Theory of Statistics. Griffin, London, 1979.Google Scholar
  25. 25.
    H. S. Konjin. Statistical Theory of Sample Design and Analysis. North Holland, Amsterdam, 1973.Google Scholar
  26. 26.
    A. Lisi. Metodi della ricerca operativa applicati al problema della classificazione in campo medico: La malattia di Alzheimer. Technical report, Tesi di Laurea, Facoltà di Scienze Statistiche, Università degli Studi di Roma, La Sapienza, a.a. 2000–2001, 2001.Google Scholar
  27. 27.
    A. Lobo, L. J. Launer, L. Fratiglioni, K. Andersen, A. Di Carlo, M. M. Breteler, J. R. Copeland JR, J. F. Dartigues, C. Jagger, J. Martinez-Lage, H. Soininen, and A. Hofman. Prevalence of dementia and major subtypes in europe: A collaborative study of population-based cohorts. neurologic diseases in the elderly research group. Neurology, 54(11 Suppl 5):S4–9, 2000.PubMedGoogle Scholar
  28. 28.
    C. Marra, M. C. Silveri, and G. Gainotti. Predictors of cognitive decline in the early stage of probable Alzheimer disease. Dementia and Geriatric Cognitive Disorders, 11:212–218, 2000.PubMedCrossRefGoogle Scholar
  29. 29.
    G. McKhann, D. Drachman, M. Folstein, R. Katzmann, D. Price, and E. M. Stadlam. Clinical diagnosis of Alzheimer’s disease: report of the nincds-adrda work group under the auspices of the department of health and human services task force on Alzheimer’s disease. Neurology, 34:939–944, 1984.PubMedGoogle Scholar
  30. 30.
    S. S. Mirra, M. Gearing, and F. Nash. Neuropathological assessment of Alzheimer’s disease. Neurology, 49(Suppl.3):S14–S16, 1997.PubMedGoogle Scholar
  31. 31.
    D. Mitchie, D.J. Spiegelhalter, and C.C. Taylor. Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York, 1994.Google Scholar
  32. 32.
    J. T. Moroney, E. Bagiella V. C. Hachinski, P. K. Molsa, L. Gustafson, A. Brun, P. Fischer, T. Erkinjuntti, W. Rosen, M. C. Paik, T. K. Tatemichi, and D. W. Desmond. Misclassification of dementia subtype using the Hachinski Ischemic Score: results of a meta-analysis of patients with pathologically verified dementias. Annals of the New York Academy of Science, 826:490–492, 1997.CrossRefGoogle Scholar
  33. 33.
    J. C. Morris, A. Heyman, R. C. Mohs, J. P. Hughes, G. van Belle, G. Fillenbaum, E. D. Mellits, and C. Clark. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I: Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39:1159–1165, 1989.PubMedGoogle Scholar
  34. 34.
    J. C. Morris, M. Storandt, and D.W. McKeel. Cerebral amyloid deposition and diffuse plaques in normal aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology, 46:707–719, 1996.PubMedGoogle Scholar
  35. 35.
    L. Nieddu, A. Di Cioccio, A. Lisi, V. Pescosolido, and G. Patrizi. A study on the accuracy of diagnostic dementia levels by an automatic reclassification algorithm. In La Gerariatria per la Longevita, IV Convegno Geriatrico Dottor Angelico, Aquino (Frosinone), Italy, pages 26–27, 2002.Google Scholar
  36. 36.
    L. Nieddu and G. Patrizi. Formal properties of pattern recognition algorithms: A review. European Journal of Operational Research, 120:459–495, 2000.CrossRefGoogle Scholar
  37. 37.
    The Ronald & Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Consensus report of the working group on: Molecular and biochemical markers of Alzheimer’s disease. Neurobiology of Aging, 19:109–116, 1998.CrossRefGoogle Scholar
  38. 38.
    G. Patrizi. Optimal clustering properties. Ricerca Operativa, 10:41–64, 1979.Google Scholar
  39. 39.
    G. Patrizi, G. Addonisio, C. Giannakakis, A. Onetti Muda, Gr. Patrizi, and T. Faraggiana. Diagnosis of Alport syndrome by pattern recognition techniques. In P. M. Pardalos, V. Boginski, and A. Vazacopoulos, editors, Data Mining in Biomedicine. Springer, New York, 2006.Google Scholar
  40. 40.
    D. X. Rasmusson, K. A. Carson, R. Brookmeyer, C. Kawas, and J. Brandt. Predicting rate of cognitive decline in probable Alzheimer’s disease. Brain and Cognition, 31:133–147, 1996.PubMedCrossRefGoogle Scholar
  41. 41.
    L. Ravizza. Demenze. In G. B. Cassano P. Pancheri, editor, Trattato Italiano di Psichiatria, pages 1035–1170. 2nd edition, Masson, Milan, 1999.Google Scholar
  42. 42.
    E. M. Reiman and R. J. Caselli. Alzheimer’s disease. Maturitas, 31:185–200, 1999.PubMedCrossRefGoogle Scholar
  43. 43.
    G. C. Roman, T. K. Tatemichi, T. Erkinjuntti, J. L. Cummings, J. C. Masdeu, J. H. Garcia, L. Amaducci, J. M. Orgogozo, A. Brun, and A. Hofman. Vascular dementia: Diagnostic criteria for research studies. report of the NINDS-AIREN workshop. Neurology, 43:250–260, 1993.PubMedCrossRefGoogle Scholar
  44. 44.
    G. A. F. Seber. Multivariate Observations. Wiley, New York, 1984.Google Scholar
  45. 45.
    D. A. Snowdon, L.H. Greiner, J.A. Mortimer, K.P. Riley, P.A. Greiner, and W.R. Markesbery. Brain infraction and the clinical expression of Alzheimer’s disease. Journal of the American Medical Association, 277:813–817, 1997.PubMedCrossRefGoogle Scholar
  46. 46.
    M. E. Strauss, M.M. Lee, and J.M. Di Filippo. Premorbid personality and behavior symptoms in Alzheimer’s disease. Archives of Neurology, 54:257–259, 1997.PubMedGoogle Scholar
  47. 47.
    P. Tariska and K. Urbanics. Clinical subtypes of Alzheimer’s disease. Archives of Gerontology and Geriatrics, 21:13–20, 1995.PubMedCrossRefGoogle Scholar
  48. 48.
    D. T. Villareal, E. Grant, J. P. Miller, M. Storandt, D. W. McKeel, and J. C. Morris. Clinical outcomes of possible versus probable Alzheimer’s disease. Neurology, 61:661–667, 2003.PubMedGoogle Scholar
  49. 49.
    D. T. Villareal and J. C. Morris. The diagnosis of Alzheimer’s disease. Alzheimer’s Disease Review, 3:142–152, 1998.Google Scholar
  50. 50.
    S. Watanabe. Pattern Recognition: Human and Mechanical. Wiley, New York, 1985.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Giacomo Patrizi
    • 1
  • Gregorio Patrizi
    • 2
  • Luigi Di Cioccio
    • 3
  • Claudia Bauco
    • 4
  1. 1.Dipartimento di Statistica, Probabilità e Statistiche ApplicateUniversità degli Studi “La Sapienza”RomeItaly
  2. 2.Dipartimento di Scienze ChirurgicheUniversità degli Studi “La Sapienza”RomeItaly
  3. 3.Area Dipartimentale GeriatricaASL FrosinoneFrosinoneItaly
  4. 4.Unita Operativa GeriatriaOspedale “G. De Bosis”CassinoItaly

Personalised recommendations