Diagnosis of Alport Syndrome by Pattern Recognition Techniques

  • Giacomo Patrizi
  • Gabriella Addonisio
  • Costas Giannakakis
  • Andrea Onetti Muda
  • Gregorio Patrizi
  • Tullio Faraggiana
Part of the Springer Optimization and Its Applications book series (SOIA, volume 7)


Alport syndrome is a genetic multi-organ disorder, primarily linked with the X-Chromosome, although autosomal forms have been reported. Ultra-structural observations in some cases indicate highly characteristic lesions and mutations in certain genes. Thus the symptomatology of the syndrome is complex and diverse. The aim of this chapter is to present a pattern recognition algorithm to diagnose with high precision patients who may be subject to Alport syndrome. Images of the epidermal basement membrane are studied and a rule to classify them precisely is presented. Theoretical and experimental results are given regarding the possibility of solving this problem.


Glomerular Basement Membrane COL4A4 Gene Alport Syndrome Pattern Recognition Technique Matrix Vector Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Addonisio. Tecnica di classificazione per la diagnosi della sindrome di Alport. Technical report, Laurea Thesis Universita di Roma La Sapienza Facoltà di Statistica, 2002.Google Scholar
  2. 2.
    P. Barsotti, A. Onetti Muda, G. Mazzucco, L. Masella, B. Basolo, M. De Marchi, G. Rizzoni, G. Monga, and T. Faraggiana. Distribution of alpha-chains of type IV collagen in glomerular basement memebranes with ultrastructural alterations suggestive of Alport syndrome. Nephrology Dialysis Transplantation, 16:945–952, 2001.CrossRefGoogle Scholar
  3. 3.
    G. Bonifazi, P. Massacci, L. Nieddu, and G. Patrizi. The classification of industrial sand-ores by image recognition methods. In Proceedings of 13th International Conference on Pattern Recognition Systems, Vol.4: Parallel and Connectionist Systems, pages 174–179, Los Alamitos, CA, 1996. IEEE Computer Society Press.Google Scholar
  4. 4.
    L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-Verlag, Berlin, 1996.Google Scholar
  5. 5.
    R. O. Duda and P. E. Hart. Pattern Recognition and Scene Analysis. Wiley, New York, 1973.Google Scholar
  6. 6.
    E. P. Goss and G. S. Vozikis. Improving health care organizational management through neural network learning. Health Care Management Science, 5:221–227, 2002.PubMedCrossRefGoogle Scholar
  7. 7.
    H. S. Konjin. Statistical Theory of Sample Design and Analysis. North Holland, Amsterdam, 1973.Google Scholar
  8. 8.
    L. Massella, K. Giannakakis, A. Onetti Muda, A. Taranta, G. Rizzoni, and T. Faraggiana. Type VII colagen in Alport syndrome. Journal of the American Society of Nephrology, 13:309, 2002.Google Scholar
  9. 9.
    G. Mazzucco, P. Barsotti, A. Onetti Muda, M. Fortunato, M. Mihatsch, L. Torri-Tarelli, A. Renieri, T. Faraggiana, M. De Marchi, and G. Monca. Ultrastructural and immunohistochemical findings in Alport’s syndrome: A study of 108 patients from 97 italian families with particular emphasis on col4a5 gene mutation correlations. Journal of Nephrology, 9:1023–1031, 1998.Google Scholar
  10. 10.
    S. Meleg-Smith, S. Magliato, M. Cheles, R.E. Garola, and C.E. Kashtan. X-linked Alport syndrome in females. Human Pathology, 29:404–408, 1998.PubMedCrossRefGoogle Scholar
  11. 11.
    G.L. Nemhauser and G.L. Wolsey. Integer and Combinatorial Optimization. Wiley, New York, 1988.Google Scholar
  12. 12.
    L. Nieddu and G. Patrizi. Formal properties of pattern recognition algorithms: A review. European Journal of Operational Research, 120:459–495, 2000.CrossRefGoogle Scholar
  13. 13.
    G. Patrizi. Optimal clustering properties. Ricerca Operativa, 10:41–64, 1979.Google Scholar
  14. 14.
    G. Patrizi, L. Nieddu, P. Mingazzini, F. Paparo, Gr. Patrizi, C. Provenza, F. Ricci, and L. Memeo. Algoritmi di supporto alla diagnosi istopatologica delle neoplasie del colon. Associazione Italiana per l’Intelligenza Artificiale (AI*IA), 2:4–14, 2002.Google Scholar
  15. 15.
    V. N. Vapnik. Learning Theory. Wiley, New York, 1998.Google Scholar
  16. 16.
    S. Watanabe. Pattern Recognition: Human and Mechanical. Wiley, New York, 1985.Google Scholar
  17. 17.
    T. Y. Young and W. Calvert. Classification, Estimation and Pattern Recognition. Elsevier, New York, 1974.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Giacomo Patrizi
    • 1
  • Gabriella Addonisio
    • 1
  • Costas Giannakakis
    • 2
  • Andrea Onetti Muda
    • 2
  • Gregorio Patrizi
    • 3
  • Tullio Faraggiana
    • 2
  1. 1.Dipartimento di Statistica, Probabilità e Statistiche ApplicateUniversità di Roma “La Sapienza”Italy
  2. 2.Dipartimento di Medicina Sperimentale e PatologiaUniversità di Roma “La Sapienza”Italy
  3. 3.Dipartimento di Scienze ChirurgicheUniversità di Roma “La Sapienza”Italy

Personalised recommendations