Advertisement

Single–Walled Carbon Nanotubes for High Performance Thin Film Electronics

  • Qing Cao
  • Coskun Kocabas
  • Matthew A. Meitl
  • Seong Jun Kang
  • Jang Ung Park
  • John A. Rogers
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Introduction and Motivation

Although the great majority of work on single-walled carbon nanotube (SWNT) electronics has focused on devices and test structures that incorporate individual tubes as the active components [1, 2, 3, 4, 5, 6], it is likely that realistic technology applications will require systems that involve large numbers of tubes, in the form of random networks or aligned arrays or something in between. These types of SWNT based monolayer or sub-monolayer ‘films’ avoid many of the challenges of single tube devices because they (i) offer attractive statistics that minimize device-to-device variations even with electronically heterogeneous tubes, (ii) provide large active areas and high current outputs, due to the large number of tubes involved in transport, and (iii) do not require, in many cases, precise spatial positioning of individual tubes [7, 8, 9]. Potential applications that could derive from a successful effort in SWNT thin film electronics range from enhanced,...

Keywords

Chemical Vapor Deposition Gate Dielectric Individual Tube Elastomeric Dielectric Gate Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank T. Banks, K. Colravy and D. Sievers for help with the processing. This work was supported by DARPA-funded AFRL-managed Macroelectronics Program Contract FA8650-04-C-7101, the NSF through grant NIRT-0403489, the Frederick Seitz Materials Research Lab and the Center for Microanalysis of Materials in University of Illinois which is funded by U.S. Department of Energy through grant DEFG02-91-ER45439, the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems in University of Illinois which is funded by the NSF through grant DMI-0328162, and a graduate fellowship from the Fannie and John Hertz Foundation (M.A.M.).

References

  1. 1.
    P. Avouris, “Molecular Electronics with carbon nanotubes," Acc. Chem. Res., vol. 35, pp. 1026–1034, 2002.Google Scholar
  2. 2.
    P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, “Carbon nanotube electronics," Proc. IEEE, vol. 91, pp. 1772–1784, 2003.Google Scholar
  3. 3.
    P. Avouris, R. Martel, V. Derycke, and J. Appenzeller, “Carbon nanotube transistors and logic circuits," Physica B, vol. 323, pp. 6–14, 2002.Google Scholar
  4. 4.
    M. Ouyang, J.-L. Huang, and C. M. Lieber, “Fundamental electronic properties and applications of single-walled carbon nanotubes," Acc. Chem. Res., vol. 35, pp. 1018–1025, 2002.Google Scholar
  5. 5.
    V. N. Popov, “Carbon nanotubes: properties and application," Mater. Sci. Eng., R, vol. 43, pp. 61–102, 2004.Google Scholar
  6. 6.
    A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, and E. Unger, “How do carbon nanotubes fit into the semiconductor roadmap?," Appl. Phys. A – Mater. Sci. Process., vol. 80, pp. 1141–1151, 2005.Google Scholar
  7. 7.
    E. S. Snow, J. P. Novak, M. D. Lay, E. H. Houser, F. K. Perkins, and P. M. Campbell, “Carbon nanotube networks: Nanomaterial for macroelectronic applications," J. Vac. Sci. Technol. B, vol. 22, pp. 1990–1994, 2004.Google Scholar
  8. 8.
    R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Steinhoegl, F. Kreupl, and W. Hoenlein, “High-current nanotube transistors," Nano. Lett., vol. 4, pp. 831–834, 2004.Google Scholar
  9. 9.
    Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers, “p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks," Nano. Lett., vol. 4, pp. 2031–2035, 2004.Google Scholar
  10. 10.
    J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks," Proc. Natl. Acad. Sci. U.S.A., vol. 98, pp. 4835–4840, 2001.Google Scholar
  11. 11.
    I. P. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. L. Shi, “A carbon nanotube strain sensor for structural health monitoring," Smart Mater. Struct., vol. 15, pp. 737–748, 2006.Google Scholar
  12. 12.
    R. H. Reuss, B. R. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rogers, M. Hatalis, D. Temple, G. Moddel, B. J. Eliasson, M. J. Estes, J. Kunze, E. S. Handy, E. S. Harmon, D. B. Salzman, J. M. Woodall, M. A. Alam, J. Y. Murthy, S. C. Jacobsen, M. Olivier, D. Markus, P. M. Campbell, and E. Snow, “Macroelectronics: Perspectives on technology and applications," Proc. IEEE, vol. 93, pp. 1239–1256, 2005.Google Scholar
  13. 13.
    R. H. Reuss, D. G. Hopper, and J. G. Park, “Macroelectronics," MRS Bull., vol. 31, pp. 447–450, 2006.Google Scholar
  14. 14.
    S. Lee, B. Koo, J. G. Park, H. Moon, J. Hahn, and J. M. Kim, “Development of high-performance organic thin-film transistors for large-area displays," MRS Bull., vol. 31, pp. 455–459, 2006.Google Scholar
  15. 15.
    P. van der Wilt, M. G. Kane, A. B. Limanov, A. H. Firester, L. Goodman, J. Lee, J. Abelson, A. M. Chitu, and J. S. Im, “Low-temperature polycrystalline silicon thin-film transistors and circuits on flexible substrates," MRS Bull., vol. 31, pp. 461–465, 2006.Google Scholar
  16. 16.
    S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature, vol. 428, pp. 911–918, 2004.Google Scholar
  17. 17.
    G. Thomas, “Invisible circuits," Nature, vol. 389, pp. 907–908, 1997.Google Scholar
  18. 18.
    R. F. Service, “Materials science – Inorganic electronics begin to flex their muscle," Science, vol. 312, pp. 1593–1594, 2006.Google Scholar
  19. 19.
    T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes," Nano Lett., vol. 4, pp. 35–39, 2004.Google Scholar
  20. 20.
    X. J. Zhou, J. Y. Park, S. M. Huang, J. Liu, and P. L. McEuen, “Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors," Phys. Rev. Lett., vol. 95, p. 146805, 2005.Google Scholar
  21. 21.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. J. Dai, “High-field quasiballistic transport in short carbon nanotubes," Phys. Rev. Lett., vol. 92, 2004.Google Scholar
  22. 22.
    J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes," Science, vol. 310, pp. 1171–1174, 2005.Google Scholar
  23. 23.
    J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET," Science, vol. 300, pp. 783–786, 2003.Google Scholar
  24. 24.
    R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators," Science, vol. 284, pp. 1340–1344, 1999.Google Scholar
  25. 25.
    M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfine, “Bending and buckling of carbon nanotubes under large strain," Nature, vol. 389, pp. 582–584, 1997.Google Scholar
  26. 26.
    D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park, and M. Tinkham, “Plastic deformations in mechanically strained single-walled carbon nanotubes," Phys. Rev. B, vol. 67, p. 033407, 2003.Google Scholar
  27. 27.
    S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, “Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes," Phys. Rev. Lett., vol. 93, p. 167401, 2004.Google Scholar
  28. 28.
    Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing," J. Am. Chem. Soc., vol. 124, pp. 7654–7655, 2002.Google Scholar
  29. 29.
    S.-H. Hur, C. Kocabas, A. Gaur, M. Shim, O. O. Park, and J. A. Rogers, “Printed thin film transistors and complementary logic gates that use polymer coated single-walled carbon nanotube networks," J. Apply. Phys., vol. 98, p. 114302, 2005.Google Scholar
  30. 30.
    B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides, “Unconventional nanofabrication," Annu. Rev. Mater. Res., vol. 34, pp. 339–372, 2004.Google Scholar
  31. 31.
    P. Calvert, “Inkjet printing for materials and devices," Chem. Mater., vol. 13, pp. 3299–3305, 2001.Google Scholar
  32. 32.
    Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films," Science, vol. 305, pp. 1273–1276, 2004.Google Scholar
  33. 33.
    M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets," Science, vol. 309, pp. 1215–1219, 2005.Google Scholar
  34. 34.
    U. J. Kim, H. R. Gutierrez, J. P. Kim, and P. C. Eklund, “Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes," J. Phys. Chem. B, vol. 109, pp. 23358–23365, 2005.Google Scholar
  35. 35.
    A. Hirsch, “Functionalization of single-walled carbon nanotubes," Angew. Chem. Int. Ed., vol. 41, pp. 1853–1859, 2002.Google Scholar
  36. 36.
    A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, and H. J. Dai, “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics," Nano Lett., vol. 4, pp. 447–450, 2004.Google Scholar
  37. 37.
    A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. J. Dai, “High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates," Nat. Mater., vol. 1, pp. 241–246, 2002.Google Scholar
  38. 38.
    M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert, and P. Legagneux, “Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors," Appl. Phys. Lett., vol. 88, pp. 113507, 2006.Google Scholar
  39. 39.
    B. M. Kim, T. Brintlinger, E. Cobas, M. S. Fuhrer, H. M. Zheng, Z. Yu, R. Droopad, J. Ramdani, and K. Eisenbeiser, “High-performance carbon nanotube transistors on SrTiO3/Si substrates," Appl. Phys. Lett., vol. 84, pp. 1946–1948, 2004.Google Scholar
  40. 40.
    M. Shim, A. Javey, N. W. S. Kam, and H. J. Dai, “Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors," J. Am. Chem. Soc., vol. 123, pp. 11512–11513, 2001.Google Scholar
  41. 41.
    G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, “Highly efficient Gating and doping of carbon nanotubes with polymer electrolytes," Nano Lett., vol. 4, pp. 927–931, 2004.Google Scholar
  42. 42.
    T. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Polymer electrolyte gating of carbon nanotube network transistors," Nano Lett., vol. 5, pp. 905–911, 2005.Google Scholar
  43. 43.
    M. Shim, T. Ozel, A. Gaur, and C. J. Wang, “Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption," J. Am. Chem. Soc., vol. 128, pp. 7522–7530, 2006.Google Scholar
  44. 44.
    C. Klinke, J. Chen, A. Afzali, and P. Avouris, “Charge transfer induced polarity switching in carbon nanotube transistors," Nano Lett., vol. 5, pp. 555–558, 2005.Google Scholar
  45. 45.
    E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, “Chemical detection with a single-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942–1945, 2005.Google Scholar
  46. 46.
    E. S. Snow and F. K. Perkins, “Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors," Nano Lett., vol. 5, pp. 2414–2417, 2005.Google Scholar
  47. 47.
    H. R. Byon and H. C. Choi, “Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications," J. Am. Chem. Soc., vol. 128, pp. 2188–2189, 2006.Google Scholar
  48. 48.
    A. Star, E. Tu, J. Niemann, J. C. P. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors," Proc. Natl. Acad. Sci. U S A, vol. 103, pp. 921–926, 2006.Google Scholar
  49. 49.
    I. P. Kang, Y. Y. Heung, J. H. Kim, J. W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G. R. Kirikera, V. Shanov, M. J. Schulz, D. L. Shi, J. Boerio, S. Mall, and M. Ruggles-Wren, “Introduction to carbon nanotube and nanofiber smart materials," Compos. Pt. B – Eng., vol. 37, pp. 382–394, 2006.Google Scholar
  50. 50.
    M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, and J. M. Kikkawa, “Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes," Phys. Rev. Lett., vol. 93, p. 037404, 2004.Google Scholar
  51. 51.
    M. Kaempgen, G. S. Duesberg, and S. Roth, “Transparent carbon nanotube coatings," Appl. Surf. Sci., vol. 252, pp. 425–429, 2005.Google Scholar
  52. 52.
    A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, “Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells," Appl. Phys. Lett., vol. 87, p. 203511, 2005.Google Scholar
  53. 53.
    K. Lee, Z. Wu, Z. Chen, F. Ren, S. J. Pearton, and A. G. Rinzler, “Single Wall Carbon Nanotubes for p-Type Ohmic Contacts to GaN Light-Emitting Diodes," Nano Lett., vol. 4, pp. 911–914, 2004.Google Scholar
  54. 54.
    C. Kocabas, N. Pimparkar, O. Yesilyurt, M. A. Alam, and J. A. Rogers, “Experimental and theoretical studies of transport through large scale, partially aligned arrays of single walled carbon nanotubes in thin film type transistors," Nano Lett., vol. 7, pp. 1195–1202, 2007.Google Scholar
  55. 55.
    M. A. Alam, N. Pimparkar, S. Kumar, and J. Murthy, “Theory of nanocomposite network transistors for macroelectronics applications," MRS Bull., vol. 31, pp. 466–470, 2006.Google Scholar
  56. 56.
    E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, “Random networks of carbon nanotubes as an electronic material," Appl. Phys. Lett., vol. 82, pp. 2145–2147, 2003.Google Scholar
  57. 57.
    K. Bradley, J. C. P. Gabriel, and G. Grüner, “Flexible nanotube electronics," Nano Lett., vol. 3, pp. 1353–1355, 2003.Google Scholar
  58. 58.
    R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, and R. Yerushalmi-Rozen, “Stabilization of individual carbon nanotubes in aqueous solutions," Nano Lett., vol. 2, pp. 25–28, 2002.Google Scholar
  59. 59.
    R. C. Haddon, J. Sippel, A. G. Rinzler, and F. Papadimitrakopoulos, “Purification and separation of carbon nanotubes," Mrs Bull., vol. 29, pp. 252–259, 2004.Google Scholar
  60. 60.
    D. E. Johnston, M. F. Islam, A. G. Yodh, and A. Johnson, “Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide," Nature Mater., vol. 4, pp. 589–592, 2005.Google Scholar
  61. 61.
    M. A. Meitl, Y. X. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, and J. A. Rogers, “Solution casting and transfer printing single-walled carbon nanotube films," Nano Lett., vol. 4, pp. 1643–1647, 2004.Google Scholar
  62. 62.
    J. U. Park, M. A. Meitl, S. H. Hur, M. L. Usrey, M. S. Strano, P. J. A. Kenis, and J. A. Rogers, “In situ deposition and patterning of single-walled carbon nanotubes by Laminar flow and controlled flocculation in microfluidic channels," Angew. Chem.-Int. Edit., vol. 45, pp. 581–585, 2006.Google Scholar
  63. 63.
    Y. X. Zhou, L. B. Hu, and G. Grüner, “A method of printing carbon nanotube thin films," Appl. Phys. Lett., vol. 88, p. 123109, 2006.Google Scholar
  64. 64.
    Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures," Chem. Rev., vol. 99, pp. 1823–1848, 1999.Google Scholar
  65. 65.
    D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls," Nature, vol. 363, pp. 605–607, 1993.Google Scholar
  66. 66.
    H. J. Dai, “Nanotube growth and characterization," in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Eds. Berlin Heidelberg: Springer-Verlag, 2001, pp. 29–53.Google Scholar
  67. 67.
    H. J. Dai, J. Kong, C. W. Zhou, N. Franklin, T. Tombler, A. Cassell, S. S. Fan, and M. Chapline, “Controlled chemical routes to nanotube architectures, physics, and devices," J. Phys. Chem. B, vol. 103, pp. 11246–11255, 1999.Google Scholar
  68. 68.
    A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai, “Large scale CVD synthesis of single-walled carbon nanotubes," J. Phys. Chem. B, vol. 103, pp. 6484–6492, 1999.Google Scholar
  69. 69.
    H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons," Appl. Phys. Lett., vol. 72, pp. 3282–3284, 1998.Google Scholar
  70. 70.
    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, and H. Dai, “Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen “ Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 16141–16145, 2005.Google Scholar
  71. 71.
    Y. Murakami, S. Chiashi, Y. Miyauchi, M. H. Hu, M. Ogura, T. Okubo, and S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy," Chem. Phys. Lett., vol. 385, pp. 298–303, 2004.Google Scholar
  72. 72.
    Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes," J. Phys. Chem. B, vol. 105, pp. 11424–11431, 2001.Google Scholar
  73. 73.
    M. Su, B. Zheng, and J. Liu, “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity," Chem. Phys. Lett., vol. 322, pp. 321–326, 2000.Google Scholar
  74. 74.
    C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, and J. A. Rogers, “Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors," Small, vol. 1, pp. 1110–1116, 2005.Google Scholar
  75. 75.
    C. Kocabas, M. Shim, and J. A. Rogers, “Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices," J. Am. Chem. Soc., vol. 128, pp. 4540–4541, 2006.Google Scholar
  76. 76.
    N. Saran, K. Parikh, D. S. Suh, E. Munoz, H. Kolla, and S. K. Manohar, “Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates," J. Am. Chem. Soc., vol. 126, pp. 4462–4463, 2004.Google Scholar
  77. 77.
    Q. Cao, S.-H. Hur, Z.-T. Zhu, Y. Sun, C. Wang, M. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics," Adv. Mater., vol. 18, pp. 304–309, 2006.Google Scholar
  78. 78.
    L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks," Nano Lett., vol. 4, pp. 2513–2517, 2004.Google Scholar
  79. 79.
    M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes," Appl. Phys. Lett., vol. 88, 2006.Google Scholar
  80. 80.
    Q. Cao, Z. T. Zhu, M. G. Lemaitre, M. G. Xia, M. Shim, and J. A. Rogers, “Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes," Appl. Phys. Lett., vol. 88, p. 113511, 2006.Google Scholar
  81. 81.
    B. Vigolo, C. Coulon, M. Maugey, C. Zakri, and P. Poulin, “An experimental approach to the percolation of sticky nanotubes," Science, vol. 309, pp. 920–923, 2005.Google Scholar
  82. 82.
    S. Kumar, J. Y. Murthy, and M. A. Alam, “Percolating conduction in finite nanotube networks," Phys. Rev. Lett., vol. 95, p. 066802, 2005.Google Scholar
  83. 83.
    S. Kumar, N. Pimparkar, J. Y. Murthy, and M. A. Alam, “Theory of transfer characteristics of nanotube network transistors," Appl. Phys. Lett., vol. 88, p. 123505, 2006.Google Scholar
  84. 84.
    S. D. Li, Z. Yu, C. Rutherglen, and P. J. Burke, “Electrical properties of 0.4 cm long single-walled carbon nanotubes," Nano Lett., vol. 4, pp. 2003–2007, 2004.Google Scholar
  85. 85.
    V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density," Nano Lett., vol. 6, pp. 205–208, 2006.Google Scholar
  86. 86.
    J. Guo, S. Goasguen, M. Lundstrom, and S. Datta, “Metal-insulator-semiconductor electrostatics of carbon nanotubes," Appl. Phys. Lett., vol. 81, pp. 1486–1488, 2002.Google Scholar
  87. 87.
    E. S. Snow, P. M. Campbell, M. G. Ancona, and J. P. Novak, “High-mobility carbon-nanotube thin-film transistors on a polymeric substrate," Appl. Phys. Lett., vol. 86, p. 033105, 2005.Google Scholar
  88. 88.
    Q. Cao, M. G. Xia, C. Kocabas, M. Shim, S. V. Rotkin, and J. A. Rogers, “Gate Capacitance Coupling of SWNT Thin-film Transistor," Appl. Phys. Lett., vol. 90, p. 023516, 2007.Google Scholar
  89. 89.
    S. J. Kang, C. Kocabas, T. Ozel, M. Shim, S. V. Rotkin, and J. A. Rogers, “High performance electronics based on dense, perfectly aligned arrays of single walled carbon nanotubes," Nat. Nanotech. vol 2, pp. 230–236, 2007.Google Scholar
  90. 90.
    K. Balasubramanian, R. Sordan, M. Burghard, and K. Kern, “A selective electrochemical approach to carbon nanotube field-effect transistors," Nano. Lett., vol. 4, pp. 827–830, 2004.Google Scholar
  91. 91.
    K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, and K. Kern, “Electrical transport and confocal raman studies of electrochemically modified individual carbon nanotubes," Adv. Mater., vol. 15, pp. 1515–1518, 2003.Google Scholar
  92. 92.
    M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, “Electronic structure control of single-walled carbon nanotube functionalization," Science, vol. 301, pp. 1519–1522, 2003.Google Scholar
  93. 93.
    C. A. Dyke, M. P. Stewart, F. Maya, and J. M. Tour, “Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications," Synlett, pp. 155–160, 2004.Google Scholar
  94. 94.
    C. Wang, Q. Cao, T. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Electronically selective chemical functionalization of carbon nanotubes: correlation between raman spectral and electrical responses," J. Am. Chem. Soc., vol. 127, pp. 11460–11468, 2005.Google Scholar
  95. 95.
    A. Kukovecz, C. Kramberger, V. Georgakilas, M. Prato, and H. Kuzmany, “A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process," Eur. Phys. J. B, vol. 28, pp. 223–230, 2002.Google Scholar
  96. 96.
    C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects," Phys. Rev. Lett., vol. 93, p. 147406, 2004.Google Scholar
  97. 97.
    M. S. Strano, “Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy," J. Am. Chem. Soc., vol. 125, pp. 16148–16153, 2003.Google Scholar
  98. 98.
    J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, “Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622–625, 2000.Google Scholar
  99. 99.
    P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, vol. 287, pp. 1801–1804, 2000.Google Scholar
  100. 100.
    V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, “Controlling doping and carrier injection in carbon nanotube transistors," Appl. Phys. Lett., vol. 80, pp. 2773–2775, 2002.Google Scholar
  101. 101.
    J. Kong, C. W. Zhou, E. Yenilmez, and H. J. Dai, “Alkaline metal-doped n-type semiconducting nanotubes as quantum dots," Appl. Phys. Lett., vol. 77, pp. 3977–3979, 2000.Google Scholar
  102. 102.
    A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, and H. J. Dai, “High performance n-type carbon nanotube field-effect transistors with chemically doped contacts," Nano Lett., vol. 5, pp. 345–348, 2005.Google Scholar
  103. 103.
    B. Yakobson and P. Avouris, “Mechanical properties of carbon nanotubes," Topics Appl. Phys., vol. 80, pp. 287–327, 2001.Google Scholar
  104. 104.
    S.-H. Hur, O. O. Park, and J. A. Rogers, “Extreme bendability in thin film transistors that use carbon nanotubes transferred from high temperature growth substrates," Appl. Phys. Lett., vol. 86, p. 243502, 2005.Google Scholar
  105. 105.
    S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube," Nature, vol. 393, pp. 49–52, 1998.Google Scholar
  106. 106.
    J. U. Lee, “Photovoltaic effect in ideal carbon nanotube diodes," Appl. Phys. Lett., vol. 87, p. 073101, 2005.Google Scholar
  107. 107.
    A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with carbon nanotube transistors," Science, vol. 294, pp. 1317–1320, 2001.Google Scholar
  108. 108.
    A. Javey, Q. Wang, A. Ural, Y. M. Li, and H. J. Dai, “Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators," Nano Lett., vol. 2, pp. 929–932, 2002.Google Scholar
  109. 109.
    Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, and P. Avouris, “An integrated logic circuit assembled on a single carbon nanotube," Science, vol. 311, pp. 1735–1735, 2006.Google Scholar
  110. 110.
    N. P. Armitage, J. C. P. Gabriel, and G. Gruner, “Quasi-Langmuir-Blodgett thin film deposition of carbon nanotubes," J. App. Phys, vol. 95, pp. 3228–3230, 2004.Google Scholar
  111. 111.
    M. D. Lay, J. P. Novak, and E. S. Snow, “Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes," Nano Lett., vol. 4, pp. 603–606, 2004.Google Scholar
  112. 112.
    M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater., vol. 5, pp. 33–38, 2006.Google Scholar
  113. 113.
    S. J. Kang, C. Kocabas, H.-S. Kim, Q. Cao, M. A. Meitl, D.-Y. Khang and J. A. Rogers, “Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications,” Nano Lett., vol.7, pp. 3343–3348, 2007.Google Scholar
  114. 114.
    S. H. Hur, M. H. Yoon, A. Gaur, M. Shim, A. Facchetti, T. J. Marks, and J. A. Rogers, “Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates," J. Am. Chem. Soc., vol. 127, pp. 13808–13809, 2005.Google Scholar
  115. 115.
    M. H. Yoon, A. Facchetti, and T. J. Marks, “Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors," Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 4678–4682, 2005.Google Scholar
  116. 116.
    Q. Cao, M.-G. Xia, M. Shim, and J. A. Rogers, “Bilayer organic/inorganic gate dielectrics for high performance, low-voltage single walled carbon nanotube thin-film transistors, complementary logic gates and p-n diodes on plastic substrates," Adv. Func. Mater., vol. 16, pp. 2355–2362, 2006.Google Scholar
  117. 117.
    S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, “Carbon nanotubes as Schottky barrier transistors," Phys. Rev. Lett., vol. 89, p. 106801, 2002.Google Scholar
  118. 118.
    J. Appenzeller, Y. M. Lin, J. Knoch, Z. H. Chen, and P. Avouris, “Comparing carbon nanotube transistors – The ideal choice: A novel tunneling device design," IEEE Trans. Electron Devices, vol. 52, pp. 2568–2576, 2005.Google Scholar
  119. 119.
    Z. H. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, and P. Avouris, “The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors," Nano Lett., vol. 5, pp. 1497–1502, 2005.Google Scholar
  120. 120.
    Y. Nosho, Y. Ohno, S. Kishimoto, and T. Mizutani, “n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes," Appl. Phys. Lett., vol. 86, 2005.Google Scholar
  121. 121.
    V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals," Science, vol. 303, pp. 1644–1646, 2004.Google Scholar
  122. 122.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor," Science, vol. 300, pp. 1269–1272, 2003.Google Scholar
  123. 123.
    E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature," Adv. Mater., vol. 17, pp. 590–594, 2005.Google Scholar
  124. 124.
    M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed nanotube junctions," Science, vol. 288, pp. 494–497, 2000.Google Scholar
  125. 125.
    A. A. Odintsov, “Schottky barriers in carbon nanotube heterojunctions," Phys. Rev. Lett., vol. 85, pp. 150–153, 2000.Google Scholar
  126. 126.
    J.-H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneously integrated, three dimensional electronics by use of printed semiconductor nanomaterials, “ Science, vol. 314, pp. 1754–1757, 2006.Google Scholar
  127. 127.
    D. A. Heller, R. M. Mayrhofer, S. Baik, Y. V. Grinkova, M. L. Usrey, and M. S. Strano, “Concomitant length and diameter separation of single-walled carbon nanotubes," J. Am. Chem. Soc., vol. 126, pp. 14567–14573, 2004.Google Scholar
  128. 128.
    D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes," J. Am. Chem. Soc., vol. 125, pp. 3370–3375, 2003.Google Scholar
  129. 129.
    Z. Chen, X. Du, M.-H. Du, C. D. Rancken, H.-P. Cheng, and A. G. Rinzler, “Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes," Nano Lett., vol. 3, pp. 1245–1249, 2003.Google Scholar
  130. 130.
    R. Krupke, F. Hennrich, H. v. Lohneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes," Science, vol. 301, pp. 344–347, 2003.Google Scholar
  131. 131.
    S. R. Lustig, A. Jagota, C. Khripin, and M. Zheng, “Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids," J. Phys. Chem. B, vol. 109, pp. 2559–2566, 2005.Google Scholar
  132. 132.
    Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, and H. Dai, “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method," Nano. Lett., vol. 4, pp. 317–321, 2004.Google Scholar
  133. 133.
    S. Auvray, J. Borghetti, M. F. Goffman, A. Filoramo, V. Derycke, J. P. Bourgoin, and O. Jost, “Carbon nanotube transistor optimization by chemical control of the nanotube-metal interface," Appl. Phys. Lett., vol. 84, pp. 5106–5108, 2004.Google Scholar
  134. 134.
    J. Chen, C. Klinke, A. Afzali, and P. Avouris, “Self-aligned carbon nanotube transistors with charge transfer doping," Appl. Phys. Lett., vol. 86, p. 123108, 2005.Google Scholar
  135. 135.
    P. J. Burke, “AC performance of nanoelectronics: towards a ballistic THz nanotube transistor," Solid-State Electron., vol. 48, pp. 1981–1986, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qing Cao
  • Coskun Kocabas
  • Matthew A. Meitl
  • Seong Jun Kang
  • Jang Ung Park
  • John A. Rogers
    • 1
  1. 1.Department of Chemistry, Department of Physics, Department of Materials Science and Engineering, Department of Electrical and Computer Engineering, Department of Mechanical Science and EngineeringBeckman Institute and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations