Chemical Sensing with SWNT FETs

  • Kyeong-Jae Lee
  • Jing Kong
Part of the Integrated Circuits and Systems book series (ICIR)


SWNTs possess unique properties that make them excellent candidates for sensing technology. Because the properties of a SWNT depend sensitively on its structure and because a SWNT is composed entirely of surface atoms, a slight variation of its environment tends to have a noticeable effect on its properties. Many types of sensors have been demonstrated using nanotubes, such as chemical [1, 2, 3], biological [4], flow [5], strain [6], pressure [7, 8], thermal [9], and mass [10] sensors. In this chapter, we will focus on the chemical sensing using SWNT FET devices.

Chemical sensors based on individual SWNTs were first demonstrated in year 2000 [ 11, 12]. The devices were constructed in the field effect transistor scheme. In Ref. [ 11], a constant bias was applied between the source and the drain electrodes and the current of the SWNT was monitored while gas molecules were introduced into the chamber. It was found that the electrical resistance of a semiconducting SWNT...


Surface Coverage Schottky Barrier Metal Contact Conductance Change Schottky Barrier Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of the work presented in this chapter was based on Dr. Jing Kong’s thesis with Prof. Hongjie Dai at Stanford University. We deeply appreciate the valuable advices and contribution from Prof. Dai. The authors would also like to thank Prof. Anantha Chandrakasan at MIT for the encouragement and support for this work. This work was funded in part by the MARCO IFC Focus Research Center Program and Intel Corporation.


  1. 1.
    J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622–625, 2000.CrossRefGoogle Scholar
  2. 2.
    A. Modi, N. Koratkar, E. Lass, B. Q. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes," Nature, vol. 424, pp. 171–174, 2003.CrossRefGoogle Scholar
  3. 3.
    E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, “Chemical detection with a single-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942–1945, 2005.CrossRefGoogle Scholar
  4. 4.
    R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. M. Li, W. Kim, P. J. Utz, and H. J. Dai, “Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors," Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 4984–4989, 2003.Google Scholar
  5. 5.
    S. Ghosh, A. K. Sood, and N. Kumar, “Carbon nanotube flow sensors," Science, vol. 299, pp. 1042–1044, 2003.CrossRefGoogle Scholar
  6. 6.
    P. Dharap, Z. L. Li, S. Nagarajaiah, and E. V. Barrera, “Nanotube film based on single-wall carbon nanotubes for strain sensing," Nanotechnology, vol. 15, pp. 379–382, 2004.CrossRefGoogle Scholar
  7. 7.
    R. J. Grow, Q. Wang, J. Cao, D. W. Wang, and H. J. Dai, “Piezoresistance of carbon nanotubes on deformable thin-film membranes," Applied Physics Letters, vol. 86, p. 093104, 2005.CrossRefGoogle Scholar
  8. 8.
    J. A. Wu, J. Zang, B. Larade, H. Guo, X. G. Gong, and F. Liu, “Computational design of carbon nanotube electromechanical pressure sensors," Physical Review B, vol. 69, p. 153406, 2004.CrossRefGoogle Scholar
  9. 9.
    C. Y. Kuo, C. L. Chan, C. Gau, C. W. Liu, S. H. Shiau, and J. H. Ting, “Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes," IEEE Transactions on Nanotechnology, vol. 6, pp. 63–69, 2007.CrossRefGoogle Scholar
  10. 10.
    D. H. Wu, W. T. Chien, C. S. Chen, and H. H. Chen, “Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor," Sensors and Actuators A-Physical, vol. 126, pp. 117–121, 2006.CrossRefGoogle Scholar
  11. 11.
    J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, “Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622–625, 2000.CrossRefGoogle Scholar
  12. 12.
    P. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, vol. 287, pp. 1801–1804, 2000.CrossRefGoogle Scholar
  13. 13.
    S. Peng and K. J. Cho, “Chemical control of nanotube electronics,"n Nanotechnology, vol. 11, pp. 57–60, 2000.CrossRefGoogle Scholar
  14. 14.
    K. Bradley, J. C. P. Gabriel, A. Star, and G. Gruner, “Short-channel effects in contact-passivated nanotube chemical sensors," Applied Physics Letters, vol. 83, pp. 3821–3823, 2003.CrossRefGoogle Scholar
  15. 15.
    S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, “Carbon nanotubes as Schottky barrier transistors," Physical Review Letters, vol. 89, p. 106801, 2002.CrossRefGoogle Scholar
  16. 16.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, “Ballistic carbon nanotube field-effect transistors," Nature, vol. 424, pp. 654–657, 2003.CrossRefGoogle Scholar
  17. 17.
    P. F. Qi, O. Vermesh, M. Grecu, A. Javey, O. Wang, H. J. Dai, S. Peng, and K. J. Cho, “Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection," Nano Letters, vol. 3, pp. 347–351, 2003.CrossRefGoogle Scholar
  18. 18.
    S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. M. Kenny, and B. Delley, “NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory," Journal of Chemical Physics, vol. 119, pp. 10904–10910, 2003.CrossRefGoogle Scholar
  19. 19.
    J. Suehiro, H. Imakiire, S. Hidaka, W. D. Ding, G. B. Zhou, K. Imasaka, and M. Hara, “Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis," Sensors and Actuators B-Chemical, vol. 114, pp. 943–949, 2006.CrossRefGoogle Scholar
  20. 20.
    J. Zhang, A. Boyd, A. Tselev, M. Paranjape, and P. Barbara, “Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors," Applied Physics Letters, vol. 88, p. 123112, 2006.CrossRefGoogle Scholar
  21. 21.
    G. A. Somorjai, Introduction to surface chemistry and catalysis. New York: John Wiley & Sons, Inc., 1994.Google Scholar
  22. 22.
    A. Zangwill, Physics at surfaces. Cambridge: Cambridge University Press, 1988.Google Scholar
  23. 23.
    X. D. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris, “Controlling energy-level alignments at carbon nanotube/Au contacts," Nano Letters, vol. 3, pp. 783–787, 2003.CrossRefGoogle Scholar
  24. 24.
    A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, and H. J. Dai, “High performance n-type carbon nanotube field-effect transistors with chemically doped contacts," Nano Letters, vol. 5, pp. 345–348, 2005.CrossRefGoogle Scholar
  25. 25.
    W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang, and H. J. Dai, “Electrical contacts to carbon nanotubes down to 1 nm in diameter," Applied Physics Letters, vol. 87, p. 173101, 2005.CrossRefGoogle Scholar
  26. 26.
    Z. H. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, and P. Avouris, “The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors," Nano Lett., vol. 5, pp. 1497–1502, 2005.CrossRefGoogle Scholar
  27. 27.
    F. Leonard and J. Tersoff, “Role of Fermi-level pinning in nanotube Schottky diodes," Physical Review Letters, vol. 84, pp. 4693–4696, 2000.CrossRefGoogle Scholar
  28. 28.
    F. Leonard and J. Tersoff, “Novel length scales in nanotube devices," Physical Review Letters, vol. 83, pp. 5174–5177, 1999.CrossRefGoogle Scholar
  29. 29.
    F. Leonard and A. A. Talin, “Size-dependent effects on electrical contacts to nanotubes and nanowires," Physical Review Letters, vol. 97, p. 026804, 2006.CrossRefGoogle Scholar
  30. 30.
    C. Huckstadt, S. Schmidt, S. Hufner, F. Forster, F. Reinert, and M. Springborg, “Work function studies of rare-gas/noble metal adsorption systems using a Kelvin probe," Physical Review B, vol. 73, p. 075409, 2006.CrossRefGoogle Scholar
  31. 31.
    M. W. Roberts and C. S. McKee, Chemistry of the metal-gas interface, monographs on the physics and chemistry of materials. Oxford University Press, 1978.Google Scholar
  32. 32.
    N. Chakrapani, Y. M. M. Zhang, S. K. Nayak, J. A. Moore, D. L. Carroll, Y. Y. Choi, and P. M. Ajayan, “Chemisorption of acetone on carbon nanotubes," Journal of Physical Chemistry B, vol. 107, pp. 9308–9311, 2003.CrossRefGoogle Scholar
  33. 33.
    J. J. Zhao, A. Buldum, J. Han, and J. P. Lu, “Gas molecule adsorption in carbon nanotubes and nanotube bundles," Nanotechnology, vol. 13, pp. 195–200, 2002.CrossRefGoogle Scholar
  34. 34.
    K. Bradley, J. C. P. Gabriel, M. Briman, A. Star, and G. Gruner, “Charge transfer from ammonia physisorbed on nanotubes," Physical Review Letters, vol. 91, p. 218301, 2003.CrossRefGoogle Scholar
  35. 35.
    J. A. Robinson, E. S. Snow, S. C. Badescu, T. L. Reinecke, and F. K. Perkins, “Role of defects in single-walled carbon nanotube chemical sensors," Nano Letters, vol. 6, p. 1747–1751, 2006.CrossRefGoogle Scholar
  36. 36.
    C. Y. Lee, S. Baik, J. Q. Zhang, R. I. Masel, and M. S. Strano, “Charge transfer from metallic single-walled carbon nanotube sensor arrays," Journal of Physical Chemistry B, vol. 110, pp. 11055–11061, 2006.CrossRefGoogle Scholar
  37. 37.
    C. Y. Lee and M. S. Strano, “Understanding the dynamics of signal transduction for adsorption of gases and vapors on carbon nanotube sensors," Langmuir, vol. 21, pp. 5192–5196, 2005.CrossRefGoogle Scholar
  38. 38.
    Y. C. Tseng, K. Phoa, D. Carlton, and J. Bokor, “Effect of diameter variation in a large set of carbon nanotube transistors," Nano Letters, vol. 6, pp. 1364–1368, 2006.CrossRefGoogle Scholar
  39. 39.
    J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, “Electron–phonon scattering in metallic single-walled carbon nanotubes," Nano Letters, vol. 4, pp. 517–520, 2004.CrossRefGoogle Scholar
  40. 40.
    X. L. Liu, Z. C. Luo, S. Han, T. Tang, D. H. Zhang, and C. W. Zhou, “Band engineering of carbon nanotube field-effect transistors via selected area chemical gating," Applied Physics Letters, vol. 86, p. 243501, 2005.CrossRefGoogle Scholar
  41. 41.
    H. Chang, J. D. Lee, S. M. Lee, and Y. H. Lee, “Adsorption of NH3 and NO2 molecules on carbon nanotubes," Applied Physics Letters, vol. 79, pp. 3863–3865, 2001.CrossRefGoogle Scholar
  42. 42.
    Y. Takao, K. Miyazaki, Y. Shimizu, and M. Egashira, “High amonia sensitive semiconductor gas sensors with double layer structure and interface electrode," Journal of Electrochemical Society, vol. 141, pp. 1028–1034, 1994.CrossRefGoogle Scholar
  43. 43.
    Y. Shimizu and M. Egashira, “Basic concepts and challenges of semiconductor gas sensors," MRS Bulletin, vol. 24, pp. 18–24, 1999.Google Scholar
  44. 44.
    A. Mandelis and C. Christofides, Physics, chemistry and technology of solid state gas sensor devices. New York: Wiley, 1993.Google Scholar
  45. 45.
    Y. J. Lu, C. Partridge, M. Meyyappan, and J. Li, “A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis," Journal of Electroanalytical Chemistry, vol. 593, pp. 105–110, 2006.CrossRefGoogle Scholar
  46. 46.
    C. Staii and A. T. Johnson, “DNA-decorated carbon nanotubes for chemical sensing," Nano Letters, vol. 5, pp. 1774–1778, 2005.CrossRefGoogle Scholar
  47. 47.
    E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, “Random networks of carbon nanotubes as an electronic material," Applied Physics Letters, vol. 82, pp. 2145–2147, 2003.CrossRefGoogle Scholar
  48. 48.
    Y. J. Lu, J. Li, J. Han, H. T. Ng, C. Binder, C. Partridge, and M. Meyyappan, “Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors," Chemical Physics Letters, vol. 391, pp. 344–348, 2004.CrossRefGoogle Scholar
  49. 49.
    J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, and R. A. McGill, “Nerve agent detection using networks of single-walled carbon nanotubes," Applied Physics Letters, vol. 83, pp. 4026–4028, 2003.CrossRefGoogle Scholar
  50. 50.
    E. S. Snow and F. K. Perkins, “Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors," Nano Letters, vol. 5, pp. 2414–2417, 2005.CrossRefGoogle Scholar
  51. 51.
    E. S. Snow, F. K. Perkins, and J. A. Robinson, “Chemical vapor detection using single-walled carbon nanotubes,” Chemical Society Reviews, vol. 35, pp. 790–798, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kyeong-Jae Lee
    • 1
  • Jing Kong
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations