Performance Modeling for Carbon Nanotube Interconnects

  • Azad Naeemi
  • James D. Meindl
Part of the Integrated Circuits and Systems book series (ICIR)


Contact Resistance Copper Wire Kinetic Inductance Quantum Capacitance Magnetic Inductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Topics in Applied Physics, “Carbon Nanotubes: Synthesis, Structure, Properties and Applications,” M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Berlin, New York, Springer, 2000.Google Scholar
  2. 2.
    A. P. Graham, et al., “How do carbon nanotubes fit into the semiconductor roadmap?” Appl. Phys. A, vol. 80, pp. 1141–1151, 2005.CrossRefGoogle Scholar
  3. 3.
    P. L. McEuen, M. S. Fuhrer, and H. Park, “Single-walled carbon nanotube electronics,” IEEE Trans. Nanotech., vol. 1, pp. 78–85, March 2002.CrossRefGoogle Scholar
  4. 4.
    R. Meservey and P. M. Tedrow, “Measurement of the kinetic inductance of superconducting linear structures,” J. Appl. Phys., vol. 40, pp. 2028–2034, April 1969.CrossRefGoogle Scholar
  5. 5.
    J. M. Pond, J. H. Claassen, and W. L. Carter, “Measurement and modeling of kinetic inductance microstrip delay lines,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-35, pp. 1256–1262, Dec. 1987.Google Scholar
  6. 6.
    H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev., vol. 128, pp. 1622–1629, Nov. 1962.CrossRefGoogle Scholar
  7. 7.
    A. Porch, P. Mauskopf, S. Doyle, and C. Dunscombe, “Calculation of the characteristics of coplanar resonators for kinetic inductance detectors,” IEEE Trans. Appl. Superconductivity, vol. 15, pp. 552–555, June 2005.CrossRefGoogle Scholar
  8. 8.
    A. Naeemi and J. D. Meindl, “Design and performance modeling for single-wall carbon nanotubes as local, semi-global and global interconnects in gigascale integrated systems,” IEEE Trans. Electron Devices, vol. 54, pp. 26–37, Jan. 2007.CrossRefGoogle Scholar
  9. 9.
    M. W. Bockrath, “Carbon Nanotubes: Electrons in One Dimension,” Ph.D. dissertation, University of California, Berekeley, CA 1999.Google Scholar
  10. 10.
    P. J. Burke, “Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes,” IEEE Trans. Nanotech. vol. 1, pp. 129–144, Sept. 2002.CrossRefGoogle Scholar
  11. 11.
    S. Salahuddin, M. Lundstrom, and S. Datta, “Transport effects on signal propagation in quantum wires,” IEEE Trans. Electron Devices, vol. 52, pp. 1734–1741, Aug. 2005.CrossRefGoogle Scholar
  12. 12.
    Z. Yu and P. J. Burke, “Microwave transport in metallic single-walled carbon nanotubes,” Nano Letters, vol. 5, pp. 1403–1406, June 2005.CrossRefGoogle Scholar
  13. 13.
    J. R. Juroshek, C. A. Hoer, and R. F. Kaiser, “Calibrating network analyzers with imperfect test ports," IEEE Transactions on Instrumentation and Measurement, vol. 38, pp. 898–901, 1989.CrossRefGoogle Scholar
  14. 14.
    S. Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge University Press, 1995.Google Scholar
  15. 15.
    Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett., vol. 84, pp. 2941–2944, 2000.CrossRefGoogle Scholar
  16. 16.
    W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, “Fabry-perot interference in nanotube electron waveguide,” Nature, vol. 411, pp. 665–669, June 2001.CrossRefGoogle Scholar
  17. 17.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, “High-field quasiballistic transport in short carbon nanotubes,” Phys. Rev. Lett., vol. 92, p. 106804, March 2004.CrossRefGoogle Scholar
  18. 18.
    O. Hjortstam, P. Isberg, S. Söderholm, and H. Dai, “Can we achieve ultra-low resistivity in carbon nanotube-based metal composites?” Appl. Phys. A, vol. 78, pp. 1175–1179, Jan. 2004.CrossRefGoogle Scholar
  19. 19.
    J. Y. Park, S. Rosenbelt, Y. Yaish, V. Sazonova, H. Üstunel, S. Braig, T. A. Arias, and P. L. McEuen, “Electron–phonon scattering in metallic single-walled carbon nanotubes,” Nano Lett., vol. 4, pp. 517–520, 2004.CrossRefGoogle Scholar
  20. 20.
    S. Li, Z. Yu, C. Rutherglen, and P. J. Burke, “Electrical properties of 0.4 cm long single-walled carbon nanotubes,” Nano Lett., vol. 4, pp. 2003–2007, 2004.CrossRefGoogle Scholar
  21. 21.
    P. J. de Pablo, et al., “Nonlinear resistance versus length in single-walled carbon nanotubes,” Phys. Rev. Lett. Vol. 88, p. 036804, Jan. 2002.CrossRefGoogle Scholar
  22. 22.
    A. Javey, P. Qi, Q. Wang, and H. Dai, “10- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography,” Proc. Natl. Acad. Sci. USA, vol. 101, pp. 13408–13410, 2004.Google Scholar
  23. 23.
    International Technology Roadmap for Semiconductors (ITRS), ed., Semiconductor Industry Association, CA, 2003.Google Scholar
  24. 24.
    HSPICE Simulation and Analysis User Guide, Release U-2003.03-PA, Synopsys, Inc., 2003.Google Scholar
  25. 25.
    A. Raychowdhury and K. Roy, “A circuit model for carbon nanotube interconnects: comparative study with Cu interconnects for scaled technologies,” Int. Conf. Comp. Aided Design, pp. 237–240, 2004.Google Scholar
  26. 26.
    W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,” J. Appl. Phys., vol. 97, pp. 023706-7, 2005.CrossRefGoogle Scholar
  27. 27.
    P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, “Broken symmetry and pseudogaps in ropes of carbon nanotubes,” Phys. Rev. B, vol. 60, pp. 7899–7904, Sept. 1999.CrossRefGoogle Scholar
  28. 28.
    A. A. Maarouf, C. L. Kane, and E. J. Mele, “Electronic structure of carbon nanotube ropes,” Phys. Rev. B, vol. 61, pp. 11156–11165, April 2000.CrossRefGoogle Scholar
  29. 29.
    H. Stahl, J. Appenzeller, R. Martel, and P. Avouris, “Intertube coupling in ropes of single-wall carbon nanotubes,” Phys. Rev. B, vol. 61, pp. 11156–11165, April 2000.CrossRefGoogle Scholar
  30. 30.
    M. Nihei, D. Kondo, A. Kawabata, Sh. Sato, H. Shioya, M. Sakaue, T. Iwai, M. Ohfuti, and Y. Awano, “Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells,” IEEE Int. Interconnect Technol. Conf., pp. 234–236, June 2005.Google Scholar
  31. 31.
    S. M. Rossnagel and T. S. Kuan, “Alteration of Cu conductivity in the size effect regime,” J. Vac. Sci. Technol. B, vol. 22, pp. 240–247, Jan./Feb. 2004.CrossRefGoogle Scholar
  32. 32.
    A. Naeemi and J. D. Meindl, “Impact of electron–phonon scattering on the performance of carbon nanotube interconnects for gigascale integration (GSI),” IEEE Electron Device Lett., pp. 476–478, July 2005.Google Scholar
  33. 33.
    A. Naeemi, J. A. Davis, and J. D. Meindl, “Compact physical models for multilevel interconnect crosstalk in gigascale integration (GSI),” IEEE Trans. Electron. Devices, vol. 51, pp. 1902–1912, Nov. 2004.CrossRefGoogle Scholar
  34. 34.
    RAPHAEL, “Interconnect Analysis Program”, TMA Inc, 1996.Google Scholar
  35. 35.
    N. C. Bruce, A. García-Valenzuela, and D. Kouznetsov, “Rough-surface capacitor: approximations of the capacitance with elementary functions," J. Phys. D: Appl. Phys., vol. 32, pp. 2692–2702, 1999.CrossRefGoogle Scholar
  36. 36.
    R. Venkatesan, J. A. Davis, and J. D. Meindl, “Compact distributed RLC interconnect models – part IV: unified models for time delay, crosstalk, and repeater insertion," IEEE Trans. Electron Devices, vol. 50, pp. 1094–1102, 2003.CrossRefGoogle Scholar
  37. 37.
    H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, "Multichannel ballistic transport in multiwall carbon nanotubes," Phys. Rev. Lett., vol. 95, pp. 086601-4, 2005.CrossRefGoogle Scholar
  38. 38.
    Q. Yanm J. Wu, G. Zhou, W. Duan, and B. Gu, “Ab initio study of transport properties of multiwalled carbon nanotubes,” Phys. Rev. B, vol. 72, p. 155425, Oct. 2005.CrossRefGoogle Scholar
  39. 39.
    J. Y. Huang, S. Chen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhaus, and Z. F. Ren, “Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes," Phys. Rev. Lett., vol. 94, pp. 236802-4, 2005.CrossRefGoogle Scholar
  40. 40.
    L. Forró and C. Schönenberger, “Physical properties of multi-wall nanotubes,” Topics in Applied Physics, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Springer, 2000.Google Scholar
  41. 41.
    A. Naeemi and J. D. Meindl, “Compact physical models for multiwall carbon-nanotube interconnects,” IEEE Electron Device Lett., vol. 27, pp. 338–340, May 2006.CrossRefGoogle Scholar
  42. 42.
    A. Svizhenko, M. P. Anantram, and T. R. Govindan, “Ballistic transport and electrostatics in metallic carbon nanotubes,” IEEE Trans. Nanotech., vol. 4, pp. 557–562, Sept. 2005.CrossRefGoogle Scholar
  43. 43.
    C. T. White and T. N. Todorov, “Carbon nanotubes as long ballistic conductors,” Nature, vol. 393, pp. 240–242, May 1998.CrossRefGoogle Scholar
  44. 44.
    J. Jiang, J. Dong, H. T. Yang, and D. Y. Xing, “Universal expression for localization length in metallic carbon nanotubes,” Phys. Rev. B, vol. 64, p. 045409, July 2001.CrossRefGoogle Scholar
  45. 45.
    M. Inohara et al., “High performance copper and low-k interconnect technology fully compatible to 90 nm-node SOC application (CMOS4),” IEDM, pp. 77–80, 2002.Google Scholar
  46. 46.
    T. Sakurai, “Perspectives on power-aware electronics,” IEEE ISSCC Dig, Tech. Papers, pp. 26–29, Feb. 2003.Google Scholar
  47. 47.
    P. Zarkesh-Ha, P. Wright, S. Lakshminarayanan, C.-C. Cheng, W. Loh, and W. Lynch, “Backend process optimization for 90 nm high-density ASIC chips,” IEEE Int. Interconnect Technol. Conf., pp. 123–125, June 2003.Google Scholar
  48. 48.
    A. Naeemi, R. Venkatesan, and J. D. Meindl, “Optimal global interconnects for GSI,” IEEE Trans. Electron. Devices, vol. 50, pp. 980–987, April 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Azad Naeemi
    • 1
  • James D. Meindl
  1. 1.Microelectronics Research CenterGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations