Direct Synthesis and Integration of SWNT Devices

  • Mario Hofmann
  • Sreekar Bhaviripudi
  • Jing Kong
Part of the Integrated Circuits and Systems book series (ICIR)


The unique properties of carbon nanotubes (as mentioned in Chapter 1) have attracted enormous attention during the past two decades. Significant progress and understanding have been made in this field, owing to the successful development of effective strategies for the fabrication of CNT-based electronic devices. Nevertheless, many challenges still need to be overcome, such as simple and reliable control over single-walled nanotube (SWNT) diameter, chirality, length, and orientation for the large-scale integration of nanotube devices and circuits.

In this chapter, we will describe the past progress and on-going efforts on the various aspects of SWNT synthesis and integration for electronic devices. There have been two parallel approaches for making SWNTs electronic devices: One is to produce bulk amount of SWNT materials first, and then followed by purification of the material and dispersion into solutions. After that the SWNTs are deposited on the substrate for device...


Chemical Vapor Deposition Electron Beam Lithography Chemical Vapor Deposition Process Radial Breathing Mode Chemical Vapor Deposition Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Most part of the work presented in this chapter was based on Dr. Jing Kong’s thesis with Professor Hongjie Dai at Stanford University. We deeply appreciate the valuable advices and contribution from Prof. Dai. The authors would also like to thank Prof. Angela Belcher at MIT for her support of this work. This work was funded in part by the MARCO IFC Focus Research Center Program.


  1. 1.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, pp. 474–477, 1997.CrossRefGoogle Scholar
  2. 2.
    M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotechnology, vol. 1, pp. 60–65, 2006.CrossRefGoogle Scholar
  3. 3.
    M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls, “Structure-based carbon nanotube sorting by sequence-dependent DNA assembly,” Science, vol. 302, pp. 1545–1548, 2003.CrossRefGoogle Scholar
  4. 4.
    M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. W. Shan,C.Kittrell,R. H. Hauge, J. M. Tour, and R. E. Smalley, “Electronic structure control of single-walled carbon nanotube functionalization,” Science, vol. 301, pp. 1519–1522, 2003.CrossRefGoogle Scholar
  5. 5.
    D. Chattopadhyay, L. Galeska, and F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes,” Journal of the American Chemical Society, vol. 125, pp. 3370–3375,2003.CrossRefGoogle Scholar
  6. 6.
    R. Krupke, F. Hennrich, H. von Lohneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, pp. 344–347, 2003.CrossRefGoogle Scholar
  7. 7.
    A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke, “Ultra-large-scale directed assembly of single-walled carbon nanotube devices,” Nano Letters, vol. 7, pp. 1556–1560, 2007.CrossRefGoogle Scholar
  8. 8.
    K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun, “DNA-templated carbon nanotube field-effect transistor,” Science, vol. 302, pp. 1380–1382, 2003.CrossRefGoogle Scholar
  9. 9.
    Y. H. Wang, D. Maspoch, S. L. Zou, G. C. Schatz, R. E. Smalley, and C. A. Mirkin, “Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 2026–2031, 2006.Google Scholar
  10. 10.
    G. G. Tibbetts, “Vapor-grown carbon fibers: Status and prospects,” Carbon, vol. 27, pp. 745–747, 1989.CrossRefGoogle Scholar
  11. 11.
    G. G. Tibbetts, “Lengths of carbon fibers grown from iron catalyst particles in natural gas,” Journal of Crystal Growth, vol. 73, pp. 431–438, 1985.CrossRefGoogle Scholar
  12. 12.
    G. G. Tibbetts, “Why are carbon filaments tubular?" Journal of Crystal Growth, vol. 66, pp. 632–638, 1984.CrossRefGoogle Scholar
  13. 13.
    G. G. Tibbetts, M. G. Devour, and E. J. Rodda, “An adsorption–diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles,” Carbon, vol. 25, pp. 367–375, 1987.CrossRefGoogle Scholar
  14. 14.
    R. T. K. Baker, “Catalytic growth of carbon filaments,” Carbon, vol. 27, pp. 315–323, 1989.CrossRefGoogle Scholar
  15. 15.
    R. T. K. Baker and N. M. Rodriguez, “Catalytic Growth of Carbon Nanofibers and Nanotubes,” presented at Symposium of the Materials Research Society, 1994.Google Scholar
  16. 16.
    Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” Journal of physical chemistry B, vol. 105, pp. 11424–11431, 2001.CrossRefGoogle Scholar
  17. 17.
    J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical Physics Letters, vol. 292, pp. 567–574, 1998.CrossRefGoogle Scholar
  18. 18.
    L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, and M. Meyyappan, “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth,” Chemical Physics Letters, vol. 348, pp. 368–374, 2001.CrossRefGoogle Scholar
  19. 19.
    J. Kong, H. Soh, A. Cassell, C. F. Quate, and H. Dai, “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, vol. 395, p. 878, 1998.CrossRefGoogle Scholar
  20. 20.
    J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, “Electron–phonon scattering in metallic single-walled carbon nanotubes,” Nano Letters, vol. 4, pp. 517–520, 2004.CrossRefGoogle Scholar
  21. 21.
    B. Zheng, Y. Li, and J. Liu, “CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst,” Applied Physics a-Materials Science & Processing, vol. 74, pp. 345–348, 2002.CrossRefGoogle Scholar
  22. 22.
    Y. Murakami, Y. Miyauchi, S. Chiashi, and S. Maruyama, “Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol,” Chemical Physics Letters, vol. 374, pp. 53–58, 2003.CrossRefGoogle Scholar
  23. 23.
    T. Tombler, C. Zhou, L. Alexeyev, J. Kong, H. Dai, L. Liu, C. Jayanthi, M. Tang, and S. Y. Wu, “Reversible nanotube electro-mechanical characteristics under local probe manipulation,” Nature, vol. 405, pp. 769–772, 2000.CrossRefGoogle Scholar
  24. 24.
    N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, and H. J. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Applied Physics Letters, vol. 81, pp. 913–915, 2002.CrossRefGoogle Scholar
  25. 25.
    J. Kong, B. J. LeRoy, S. G. Lemay, and C. Dekker, “Integration of a gate electrode into carbon nanotube devices for scanning tunneling microscopy,” Applied Physics Letters, vol. 86, p. 112106, 2005.CrossRefGoogle Scholar
  26. 26.
    H. B. Peng, T. G. Ristroph, G. M. Schurmann, G. M. King, J. Yoon, V. Narayanamurti, and J. A. Golovchenko, “Patterned growth of single-walled carbon nanotube arrays from a vapor-deposited Fe catalyst,” Applied Physics Letters, vol. 83, pp. 4238–4240, 2003.CrossRefGoogle Scholar
  27. 27.
    B. J. LeRoy, S. G. Lemay, J. Kong, and C. Dekker, “Electrical generation and absorption of phonons in carbon nanotubes,” Nature, vol. 432, pp. 371–374, 2004.CrossRefGoogle Scholar
  28. 28.
    S. D. Li, Z. Yu, C. Rutherglen, and P. J. Burke, “Electrical properties of 0.4 cm long single-walled carbon nanotubes,” Nano Letters, vol. 4, pp. 2003–2007, 2004.CrossRefGoogle Scholar
  29. 29.
    D. Kondo, S. Sato, and Y. Awano, “Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles,” Chemical Physics Letters, vol. 422, pp. 481–487, 2006.CrossRefGoogle Scholar
  30. 30.
    Y. S. Min, E. J. Bae, B. S. Oh, D. Kang, and W. Park, “Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition,” Journal of the American Chemical Society, vol. 127, pp. 12498–12499, 2005.CrossRefGoogle Scholar
  31. 31.
    Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang,E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, and H. J. Dai, “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method,” Nano Letters, vol. 4, pp. 317–321, 2004.CrossRefGoogle Scholar
  32. 32.
    E. O. Sunden, T. L. Wright, J. Lee, W. P. King, and S. Graham, “Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever,” Applied Physics Letters, vol. 88, p. 033107, 2006.CrossRefGoogle Scholar
  33. 33.
    O. Englander, D. Christensen, and L. W. Lin, “Local synthesis of silicon nanowires and carbon nanotubes on microbridges,” Applied Physics Letters, vol. 82, pp. 4797–4799, 2003.CrossRefGoogle Scholar
  34. 34.
    S. Dittmer, O. A. Nerushev, and E. E. B. Campbell, “Low ambient temperature CVD growth of carbon nanotubes,” Applied Physics a-Materials Science & Processing, vol. 84, pp. 243–246, 2006.CrossRefGoogle Scholar
  35. 35.
    D. Mann, A. Javey, J. Kong, Q. Wang, and H. J. Dai, “Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts,” Nano Letters, vol. 3, pp. 1541–1544, 2003.CrossRefGoogle Scholar
  36. 36.
    M. Ishida, H. Hongo, F. Nihey, and Y. Ochiai, “Diameter-controlled carbon nanotubes grown from lithographically defined nanoparticles,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 43, pp. L1356–L1358, 2004.CrossRefGoogle Scholar
  37. 37.
    A. Reina, M. Hofmann, D. Zhu, and J. Kong, “Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition,” Journal of Physical Chemistry C, vol. 111, pp. 7292–7297, 2007.CrossRefGoogle Scholar
  38. 38.
    S. M. Huang, M. Woodson, R. Smalley, and J. Liu, “Growth mechanism of oriented long single walled carbon nanotubes using ‘fast-heating’ chemical vapor deposition process,” Nano Letters, vol. 4, pp. 1025–1028, 2004.CrossRefGoogle Scholar
  39. 39.
    W. W. Zhou, Z. Y. Han, J. Y. Wang, Y. Zhang, Z. Jin, X. Sun, Y. W. Zhang, C. H. Yan, and Y. Li, “Copper catalyzing growth of single-walled carbon nanotubes on substrates,” Nano Letters, vol. 6, pp. 2987–2990, 2006.CrossRefGoogle Scholar
  40. 40.
    A. Ismach, L. Segev, E. Wachtel, and E. Joselevich, “Atomic-step-templated formation of single wall carbon nanotube patterns,” Angewandte Chemie - International Edition, vol. 43, pp. 6140–6143, 2004.CrossRefGoogle Scholar
  41. 41.
    S. Han, X. L. Liu, and C. W. Zhou, “Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire,” Journal of the American Chemical Society, vol. 127, pp. 5294–5295, 2005.CrossRefGoogle Scholar
  42. 42.
    C. Kocabas, M. Shim, and J. A. Rogers, “Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices,” Journal of the American Chemical Society, vol. 128, pp. 4540–4541, 2006.CrossRefGoogle Scholar
  43. 43.
    J. W. Mintmire and C. T. White, “Universal density of states for carbon nanotubes,” Physical Review Letters, vol. 81, pp. 2506–2509, 1998.CrossRefGoogle Scholar
  44. 44.
    Y. Zhang, Y. Li, W. Kim, D. Wang, and H. Dai, “Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles,” Applied physics A - Materials science & processing, vol. 74, pp. 325–328, 2002.CrossRefGoogle Scholar
  45. 45.
    Y. Li, J. Liu, Y. Q. Wang, and Z. L. Wang, “Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes,” Chemistry of Materials, vol. 13, pp. 1008–1014, 2001.CrossRefGoogle Scholar
  46. 46.
    J. Q. Lu, D. A. Rider, E. Onyegam, H. Wang, M. A. Winnik, I. Manners, Q. Cheng, Q. Fu, and J. Liu, “Carbon nanotubes with small and tunable diameters from poly(ferrocenylsilane)-block-polysiloxane diblock copolymers,” Langmuir, vol. 22, pp. 5174–5179, 2006.CrossRefGoogle Scholar
  47. 47.
    S. Bhaviripudi, A. Reina, J. F. Qi, J. Kong, and A. M. Belcher, “Block-copolymer assisted synthesis of arrays of metal nanoparticles and their catalytic activities for the growth of SWNTs,” Nanotechnology, vol. 17, pp. 5080–5086, 2006.CrossRefGoogle Scholar
  48. 48.
    S. N. Lu, Z. Y. Guo, W. Q. Ding, D. A. Dikin, J. Lee, and R. S. Ruoff, “In situ mechanical testing of templated carbon nanotubes,” Review of Scientific Instruments, vol. 77, , 2006.Google Scholar
  49. 49.
    L. An, J. M. Owens, L. E. McNeil, and J. Liu, “Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts,” Journal of the American Chemical Society, vol. 124, pp. 13688–13689, 2002.CrossRefGoogle Scholar
  50. 50.
    W. Kim, H. C. Choi, M. Shim, Y. M. Li, D. W. Wang, and H. J. Dai, “Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes,” Nano Letters, vol. 2, pp. 703–708, 2002.CrossRefGoogle Scholar
  51. 51.
    A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, “Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering,” Physical Review Letters, vol. 86, pp. 1118–1121, 2001.CrossRefGoogle Scholar
  52. 52.
    C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects,” Physical Review Letters, vol. 93, p. 147406, 2004.CrossRefGoogle Scholar
  53. 53.
    S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, “Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst,” Journal of the American Chemical Society, vol. 125, pp. 11186–11187, 2003.CrossRefGoogle Scholar
  54. 54.
    S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science, vol. 298, pp. 2361–2366, 2002.CrossRefGoogle Scholar
  55. 55.
    A. Jorio, A. P. Santos, H. B. Ribeiro, C. Fantini, M. Souza, J. P. M. Vieira, C. A. Furtado, J. Jiang, R. Saito, L. Balzano, D. E. Resasco, and M. A. Pimenta, “Quantifying carbon-nanotube species with resonance Raman scattering,” Physical Review B, vol. 72, 2005.Google Scholar
  56. 56.
    Y. H. Miyauchi, S. H. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama, “Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol,” Chemical Physics Letters, vol. 387, pp. 198–203, 2004.CrossRefGoogle Scholar
  57. 57.
    G. Lolli, L. A. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Q. Tan, and D. E. Resasco, “Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts,” Journal of Physical Chemistry B, vol. 110, pp. 2108–2115, 2006.CrossRefGoogle Scholar
  58. 58.
    P. C. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science, vol. 292, pp. 706–709, 2001.CrossRefGoogle Scholar
  59. 59.
    Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2941–2944, 2000.CrossRefGoogle Scholar
  60. 60.
    L. An, Q. A. Fu, C. G. Lu, and J. Liu, “A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices,” Journal of the American Chemical Society, vol. 126, pp. 10520–10521, 2004.CrossRefGoogle Scholar
  61. 61.
    G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, D. Mann, X. L. Li, and H. J. Dai, “Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 128, pp. 6026–6027, 2006.CrossRefGoogle Scholar
  62. 62.
    G. Drabner, A. Poppe, and H. Budzikiewicz, “The Composition of the Ch4 Plasma,” International Journal of Mass Spectrometry and Ion Processes, vol. 97, pp. 1–33, 1990.CrossRefGoogle Scholar
  63. 63.
    W. Zhou, Y. H. Ooi, R. Russo, P. Papanek, D. E. Luzzi, J. E. Fischer, M. J. Bronikowski, P. A. Willis, and R. E. Smalley, “Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO,” Chemical Physics Letters, vol. 350, pp. 6–14, 2001.CrossRefGoogle Scholar
  64. 64.
    Y. M. Li, S. Peng, D. Mann, J. Cao, R. Tu, K. J. Cho, and H. J. Dai, “On the origin of preferential growth of semiconducting single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 109, pp. 6968–6971, 2005.CrossRefGoogle Scholar
  65. 65.
    H. Park, J. J. Zhao, and J. P. Lu, “Distinct properties of single-wall carbon nanotubes with monovalent sidewall additions,” Nanotechnology, vol. 16, pp. 635–638, 2005.CrossRefGoogle Scholar
  66. 66.
    R. J. Luyken and F. Hofmann, “Concepts for hybrid CMOS-molecular non-volatile memories,” Nanotechnology, vol. 14, pp. 273–276, 2003.CrossRefGoogle Scholar
  67. 67.
    Y. C. Tseng, P. Q. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor, and H. J. Dai, “Monolithic integration of carbon nanotube devices with silicon MOS technology,” Nano Letters, vol. 4, pp. 123–127, 2004.CrossRefGoogle Scholar
  68. 68.
    J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, and Z. F. Ren, “Superplastic carbon nanotubes - Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes.,” Nature, vol. 439, pp. 281–281, 2006.CrossRefGoogle Scholar
  69. 69.
    M. Y. Sfeir, F. Wang, L. M. Huang, C. C. Chuang, J. Hone, S. P. O'Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science, vol. 306, pp. 1540–1543, 2004.CrossRefGoogle Scholar
  70. 70.
    H. B. Son, A. Reina, M. S. Dresselhaus, and J. Kong, “Characterizing the chirality distribution of single-walled carbon nanotube materials with tunable Raman spectroscopy,” Physica Status Solidi B - Basic Solid State Physics, vol. 243, pp. 3161–3165, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mario Hofmann
    • 1
  • Sreekar Bhaviripudi
  • Jing Kong
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations