Advertisement

Band Structure and Electron Transport Physics of One-Dimensional SWNTs

  • Ji-Yong Park
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

The electronic band structures of single-walled carbon nanotubes (SWNTs) along with their small size and low dimension are responsible for their unique electrical transport properties. In this chapter, we summarize the electronic band structures of one-dimensional (1D) SWNTs and the various electrical transport properties associated with them.

Introduction to the Band Structures of SWNTs

In this section, we examine how band structures of SWNTs can be obtained from that of graphene, a two-dimensional (2D) layer of graphite, along with their experimental verifications and manifestations.

Electronic Band Structure of Graphene

A SWNT can be considered as a graphene sheet, rolled up to form a hollow cylinder. As we will see, understanding the band structure of graphene is essential for understating those of SWNTs. The lattice structure of graphene in real space consists of hexagonal arrangement of carbon atoms as shown in Fig. 1.1(a). Isolated carbon atoms have four valence electrons in 2s,...

Keywords

Fermi Level Gate Voltage Electronic Band Structure Electrical Transport Measurement Metallic SWNTs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. R. Wallace, “The band theory of graphite,” Physical Review, vol. 71, pp. 622–634, 1947.MATHGoogle Scholar
  2. 2.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, vol. 60, pp. 2204–2206, 1992.Google Scholar
  3. 3.
    C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai, A. Thess, R. E. Smalley, A. R. M. Verschueren, S. J. Tans, and C. Dekker, “Temperature-dependent resistivity of single-wall carbon nanotubes,” Europhysics Letters, vol. 41, pp. 683–688, 1998.Google Scholar
  4. 4.
    S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-binding description of graphene,” Physical Review B, vol. 66, p. 035412, 2002.Google Scholar
  5. 5.
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes. Imperial College Press, 1998.Google Scholar
  6. 6.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of graphene tubules based on C60,” Physical Review B, vol. 46, pp. 1804–1811, 1992.Google Scholar
  7. 7.
    J.-C. Charlier, X. Blase, and S. Roche, “Electronic and transport properties of nanotubes,” Reviews of Modern Physics, vol. 79, pp. 677–656, 2007.Google Scholar
  8. 8.
    E. Minot, “Tuning the Band Structure of Carbon Nanotubes.” Ph.D. thesis, Cornell University, 2004.Google Scholar
  9. 9.
    R. E. Peierls, Quantum Theory of Solids. London: Oxford University Press, 1955.MATHGoogle Scholar
  10. 10.
    J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are fullerene tubules metallic?,” Physical Review Letters, vol. 68, pp. 631–634, 1992.Google Scholar
  11. 11.
    C. L. Kane and E. J. Mele, “Size, shape, and low energy electronic structure of carbon nanotubes,” Physical Review Letters, vol. 78, pp. 1932–1935, 1997.Google Scholar
  12. 12.
    A. Kleiner and S. Eggert, “Curvature, hybridization, and STM images of carbon nanotubes,” Physical Review B, vol. 64, p. 113402, 2001.Google Scholar
  13. 13.
    J. W. Mintmire and C. T. White, “Universal density of states for carbon nanotubes,” Physical Review Letters, vol. 81, pp. 2506–2509, 1998.Google Scholar
  14. 14.
    P. L. McEuen, “Nanostructures,” in Introduction to Solid State Physics, 8th ed, C. Kittel, Ed. John Wiley and Sons, 2005.Google Scholar
  15. 15.
    G. Binning, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Physical Review Letters, vol. 49, pp. 57–60, 1982.Google Scholar
  16. 16.
    R. M. Feenstra and P. Mårtensson, “Fermi-level pinning at the Sb/GaAs(110) surface studied by scanning tunneling spectroscopy,” Physical Review Letters, vol. 61, pp. 447–450, 1988.Google Scholar
  17. 17.
    N. D. Lang, “Spectroscopy of single atoms in the scanning tunneling microscope,” Physical Review B, vol. 34, pp. 5947–5950, 1986.Google Scholar
  18. 18.
    T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature, vol. 391, pp. 62–64, 1998.Google Scholar
  19. 19.
    J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes,” Nature, vol. 391, pp. 59–62, 1998.Google Scholar
  20. 20.
    M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber, “Energy gaps in ‘Metallic’ single-walled carbon nanotubes,” Science, vol. 292, pp. 702–705, 2001.Google Scholar
  21. 21.
    M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, “Single-electron transport in ropes of carbon nanotubes,” Science, vol. 275, pp. 1922–1925, 1997.Google Scholar
  22. 22.
    R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 73, pp. 2447–2449, 1998.Google Scholar
  23. 23.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, pp. 474–477, 1997.Google Scholar
  24. 24.
    S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49–52, 1998.Google Scholar
  25. 25.
    C. Zhou, J. Kong, and H. Dai, “Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps,” Physical Review Letters, vol. 84, pp. 5604–5607, 2000.Google Scholar
  26. 26.
    J. Appenzeller, J. Knoch, M. Radosavljevic, and P. Avouris, “Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors,” Physical Review Letters, vol. 92, p. 226802, 2004.Google Scholar
  27. 27.
    M. S. Dresselhaus and P. C. Eklund, “Phonons in carbon nanotubes,” Advances in Physics, vol. 49, pp. 705–814, 2000.Google Scholar
  28. 28.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-qall carbon nanotubes,” Synthetic Metals, vol. 103, pp. 2555–2558, 1999.Google Scholar
  29. 29.
    S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science, vol. 298, pp. 2361–2366, 2002.Google Scholar
  30. 30.
    M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science, vol. 297, pp. 593–596, 2002.Google Scholar
  31. 31.
    M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O'Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science, vol. 306, pp. 1540–1543, 2004.Google Scholar
  32. 32.
    T. Ando, “Excitons in carbon nanotubes,” Journal of the Physical Society of Japan, vol. 66, pp. 1066–1073, 1997.MathSciNetGoogle Scholar
  33. 33.
    S. Reich, C. Thomsen, and J. Robertson, “Exciton resonances quench the photoluminescence of zigzag carbon nanotubes,” Physical Review Letters, vol. 95, p. 077402, 2005.Google Scholar
  34. 34.
    P. T. Araujo, S. K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama, H. Chacham, M. A. Pimenta, and A. Jorio, “Third and fourth optical transitions in semiconducting carbon nanotubes,” Physical Review Letters, vol. 98, pp. 067401–067404, 2007.Google Scholar
  35. 35.
    F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science, vol. 308, pp. 838–841, 2005.Google Scholar
  36. 36.
    S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1995.Google Scholar
  37. 37.
    Y. Imry, Introduction to Mesoscopic Physics. New York: Oxford University Press, 1997.Google Scholar
  38. 38.
    R. Landauer, “Conductance from transmission: common sense points,” Physica Scripta, vol. T42, p. 110, 1992.Google Scholar
  39. 39.
    L. Kouwenhoven and C. Marcus, “Quantum dots,” Physics World, pp. 35–39, 1998.Google Scholar
  40. 40.
    M. A. Kastner, “Artificial Atoms,” Physics Today, vol. 46, pp. 24–31, 1993.Google Scholar
  41. 41.
    L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, “Electron transport in quantum dots,” in Mesoscopic Electron Transport, L. P. Kouwenhoven, G. Schon, and L. L. Sohn, Eds., Kluwer, 1997.Google Scholar
  42. 42.
    K. Ishibashi, S. Moriyama, D. Tsuya, T. Fuse, and M. Suzuki, “Quantum-dot nanodevices with carbon nanotubes,” Journal of Vacuum Science & Technology A, vol. 24, pp. 1349–1355, 2006.Google Scholar
  43. 43.
    J. Nygård, D. H. Cobden, M. Bockrath, P. L. McEuen, and P. E. Lindelof, “Electrical transport measurements on single-walled carbon nanotubes,” Applied Physics A: Materials Science & Processing, vol. 69, pp. 297–304, 1999.Google Scholar
  44. 44.
    D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, “Spin splitting and even–odd effects in carbon nanotubes,” Physical Review Letters, vol. 81, pp. 681–684, 1998.Google Scholar
  45. 45.
    S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, and C. Dekker, “Electron–electron correlations in carbon nanotubes,” Nature, vol. 394, pp. 761–764, 1998.Google Scholar
  46. 46.
    J. Nygård, D. H. Cobden, and P. E. Lindelof, “Kondo physics in carbon nanotubes,” Nature, vol. 408, pp. 342–346, 2000.Google Scholar
  47. 47.
    D. H. Cobden and J. Nygård, “Shell filling in closed single-wall carbon nanotube quantum dots,” Physical Review Letters, vol. 89, p. 046803, 2002.Google Scholar
  48. 48.
    W. Liang, M. Bockrath, and H. Park, “Shell filling and exchange coupling in metallic single-walled carbon nanotubes,” Physical Review Letters, vol. 88, p. 126801, 2002.Google Scholar
  49. 49.
    S. Moriyama, T. Fuse, M. Suzuki, Y. Aoyagi, and K. Ishibashi, “Four-electron shell structures and an interacting two-electron system in carbon-nanotube quantum dots,” Physical Review Letters, vol. 94, p. 186806, 2005.Google Scholar
  50. 50.
    N. Mason, M. J. Biercuk, and C. M. Marcus, “Local gate control of a carbon nanotube double quantum dot,” Science, vol. 303, pp. 655–658, 2004.Google Scholar
  51. 51.
    P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant, “Electron–hole symmetry in a semiconducting carbon nanotube quantum dot,” Nature, vol. 429, pp. 389–392, 2004.Google Scholar
  52. 52.
    S. Sapmaz, P. Jarillo-Herrero, Y. M. Blanter, C. Dekker, and H. S. J. van der Zant, “Tunneling in suspended carbon nanotubes assisted by longitudinal phonons,” Physical Review Letters, vol. 96, p. 026801, 2006.Google Scholar
  53. 53.
    J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, and S. Y. Wu, “Quantum interference and ballistic transmission in nanotube electron waveguides,” Physical Review Letters, vol. 87, p. 106801, 2001.Google Scholar
  54. 54.
    W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, “Fabry-Perot interference in a nanotube electron waveguide,” Nature, vol. 411, pp. 665–669, 2001.Google Scholar
  55. 55.
    J. M. Luttinger, “An exactly soluble model of a many-fermion system,” Journal of Mathematical Physics, vol. 4, pp. 1154–1162, 1963.MathSciNetGoogle Scholar
  56. 56.
    S.-I. Tomonaga, “Remarks on Bloch's method of sound waves applied to many-fermion problems,” Progress of Theoretical Physics, vol. 5, pp. 544–569, 1950.MathSciNetGoogle Scholar
  57. 57.
    R. Egger and A. O. Gogolin, “Effective low-energy theory for correlated carbon nanotubes,” Physical Review Letters, vol. 79, pp. 5082–5085, 1997.Google Scholar
  58. 58.
    C. Kane, L. Balents, and M. P. A. Fisher, “Coulomb interactions and mesoscopic effects in carbon nanotubes,” Physical Review Letters, vol. 79, pp. 5086–5089, 1997.Google Scholar
  59. 59.
    M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature, vol. 397, pp. 598–601, 1999.Google Scholar
  60. 60.
    B. Gao, A. Komnik, R. Egger, D. C. Glattli, and A. Bachtold, “Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes,” Physical Review Letters, vol. 92, p. 216804, 2004.Google Scholar
  61. 61.
    Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature, vol. 402, pp. 273–276, 1999.Google Scholar
  62. 62.
    S. Bellucci, J. González, and P. Onorato, “Crossover from the Luttinger-liquid to coulomb-blockade regime in carbon nanotubes,” Physical Review Letters, vol. 95, p. 186403, 2005.Google Scholar
  63. 63.
    A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forró, T. Nussbaumer, and C. Schönenberger, “Aharonov–Bohm oscillations in carbon nanotubes,” Nature, vol. 397, pp. 673–675, 1999.Google Scholar
  64. 64.
    S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, M. S. Strano, R. H. Hauge, R. E. Smalley, and X. Wei, “Optical signatures of the Aharonov–Bohm phase in single-walled carbon nanotubes,” Science, vol. 304, pp. 1129–1131, 2004.Google Scholar
  65. 65.
    H. Ajiki and T. Ando, “Magnetic properties of carbon nanotubes,” Journal of the Physical Society of Japan, vol. 62, pp. 2470–2480, 1993.Google Scholar
  66. 66.
    J. P. Lu, “Novel magnetic properties of carbon nanotubes,” Physical Review Letters, vol. 74, pp. 1123–1126, 1995.Google Scholar
  67. 67.
    U. C. Coskun, T.-C. Wei, S. Vishveshwara, P. M. Goldbart, and A. Bezryadin, “h/e magnetic flux modulation of the energy gap in nanotube quantum dots,” Science, vol. 304, pp. 1132–1134, 2004.Google Scholar
  68. 68.
    E. D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen, “Determination of electron orbital magnetic moments in carbon nanotubes,” Nature, vol. 428, pp. 536–539, 2004.Google Scholar
  69. 69.
    Y.-H. Kim and K. J. Chang, “Subband mixing rules in circumferentially perturbed carbon nanotubes: Effects of transverse electric fields,” Physical Review B, vol. 64, p. 153404, 2001.Google Scholar
  70. 70.
    Y. Li, S. V. Rotkin, and U. Ravaioli, “Electronic response and bandstructure modulation of carbon nanotubes in a transverse electrical field,” Nano Letters, vol. 3, pp. 183–187, 2003.Google Scholar
  71. 71.
    J. O'Keeffe, C. Wei, and K. Cho, “Bandstructure modulation for carbon nanotubes in a uniform electric field,” Applied Physics Letters, vol. 80, pp. 676–678, 2002.Google Scholar
  72. 72.
    D. Gunlycke, C. J. Lambert, S. W. D. Bailey, D. G. Pettifor, G. A. D. Briggs, and J. H. Jefferson, “Bandgap modulation of narrow-gap carbon nanotubes in a transverse electric field,” Europhysics Letters, vol. 73, pp. 759–764, 2006.Google Scholar
  73. 73.
    S. V. Rotkin and K. Hess, “Possibility of a metallic field-effect transistor,” Applied Physics Letters, vol. 84, pp. 3139–3141, 2004.Google Scholar
  74. 74.
    Y.-W. Son, J. Ihm, M. L. Cohen, S. G. Louie, and H. J. Choi, “Electrical Switching in Metallic Carbon Nanotubes,” Physical Review Letters, vol. 95, p. 216602, 2005.Google Scholar
  75. 75.
    J.-Y. Park, “Electrically tunable defects in metallic single-walled carbon nanotubes,” Applied Physics Letters, vol. 90, p. 023112, 2007.Google Scholar
  76. 76.
    L. F. Chibotaru, S. A. Bovin, and A. Ceulemans, “Bend-induced insulating gap in carbon nanotubes,” Physical Review B, vol. 66, p. 161401, 2002.Google Scholar
  77. 77.
    Y. N. Gartstein, A. A. Zakhidov, and R. H. Baughman, “Mechanical and electromechanical coupling in carbon nanotube distortions,” Physical Review B, vol. 68, p. 115415, 2003.Google Scholar
  78. 78.
    O. Gülseren, T. Yildirim, S. Ciraci, and Ç. Kılıç, “Reversible band-gap engineering in carbon nanotubes by radial deformation,” Physical Review B, vol. 65, p. 155410, 2002.Google Scholar
  79. 79.
    R. Heyd, A. Charlier, and E. McRae, “Uniaxial-stress effects on the electronic properties of carbon nanotubes,” Physical Review B, vol. 55, pp. 6820–6824, 1997.Google Scholar
  80. 80.
    S. Ogata and Y. Shibutani, “Ideal tensile strength and band gap of single-walled carbon nanotubes,” Physical Review B, vol. 68, p. 165409, 2003.Google Scholar
  81. 81.
    A. Rochefort, D. R. Salahub, and P. Avouris, “The effect of structural distortions on the electronic structure of carbon nanotubes,” Chemical Physics Letters, vol. 297, pp. 45–50, 1998.Google Scholar
  82. 82.
    L. Yang, M. P. Anantram, J. Han, and J. P. Lu, “Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain,” Physical Review B, vol. 60, pp. 13874–13878, 1999.Google Scholar
  83. 83.
    L. Yang and J. Han, “Electronic structure of deformed carbon nanotubes,” Physical Review Letters, vol. 85, pp. 154–157, 2000.Google Scholar
  84. 84.
    T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, and S.-Y. Wu, “Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation,” Nature, vol. 405, pp. 769–772, 2000.Google Scholar
  85. 85.
    J. Cao, Q. Wang, and H. Dai, “Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching,” Physical Review Letters, vol. 90, p. 157601, 2003.Google Scholar
  86. 86.
    E. D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, and P. L. McEuen, “Tuning carbon nanotube band gaps with strain,” Physical Review Letters, vol. 90, p. 156401, 2003.Google Scholar
  87. 87.
    J. Lee, H. Kim, S. J. Kahng, G. Kim, Y. W. Son, J. Ihm, H. Kato, Z. W. Wang, T. Okazaki, H. Shinohara, and Y. Kuk, “Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes,” Nature, vol. 415, pp. 1005–1008, 2002.Google Scholar
  88. 88.
    D. Karaiskaj, C. Engtrakul, T. McDonald, M. J. Heben, and A. Mascarenhas, “Intrinsic and extrinsic effects in the temperature-dependent photoluminescence of semiconducting carbon nanotubes,” Physical Review Letters, vol. 96, pp. 106805–4, 2006.Google Scholar
  89. 89.
    J. Cao, Q. Wang, and H. Dai, “Electron transport in very clean, as-grown suspended carbon nanotubes,” Nature Materials, vol. 4, pp. 745–749, 2005.Google Scholar
  90. 90.
    J. H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction. Cambridge: Cambridge University Press, 1998.Google Scholar
  91. 91.
    S. M. Sze, Physics of Semiconductor Devices. Wiley-Interscience, 1981.Google Scholar
  92. 92.
    P. L. McEuen, M. S. Fuhrer, and P. Hongkun, “Single-walled carbon nanotube electronics,” IEEE Transactions on Nanotechnology, vol. 1, pp. 78–85, 2002.Google Scholar
  93. 93.
    T. Ando and T. Nakanishi, “Impurity scattering in carbon nanotubes: absence of back scattering,” Journal of the Physical Society of Japan, vol. 67, pp. 1704–1713, 1998.Google Scholar
  94. 94.
    C. T. White and T. N. Todorov, “Carbon nanotubes as long ballistic conductors,” Nature, vol. 393, pp. 240–242, 1998.Google Scholar
  95. 95.
    H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, “Defects, quasibound states, and quantum conductance in metallic carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2917–2920, 2000.Google Scholar
  96. 96.
    M. Igami, T. Nakanishi, and T. Ando, “Conductance of carbon nanotubes with a vacancy,” Journal of the Physical Society of Japan, vol. 68, pp. 716–719, 1999.Google Scholar
  97. 97.
    T. Kostyrko, M. Bartkowiak, and G. D. Mahan, “Reflection by defects in a tight-binding model of nanotubes,” Physical Review B, vol. 59, pp. 3241–3249, 1999.Google Scholar
  98. 98.
    P. L. McEuen, M. Bockrath, D. H. Cobden, Y.-G. Yoon, and S. G. Louie, “Disorder, pseudospins, and backscattering in carbon nanotubes,” Physical Review Letters, vol. 83, pp. 5098–5101, 1999.Google Scholar
  99. 99.
    M. Ishigami, H. J. Choi, S. Aloni, S. G. Louie, M. L. Cohen, and A. Zettl, “Identifying defects in nanoscale materials,” Physical Review Letters, vol. 93, p. 196803, 2004.Google Scholar
  100. 100.
    H. Kim, J. Lee, S. J. Kahng, Y. W. Son, S. B. Lee, C. K. Lee, J. Ihm, and Y. Kuk, “Direct observation of localized defect states in semiconductor nanotube junctions,” Physical Review Letters, vol. 90, p. 216107, 2003.Google Scholar
  101. 101.
    S. Lee, G. Kim, H. Kim, B.-Y. Choi, J. Lee, B. W. Jeong, J. Ihm, Y. Kuk, and S.-J. Kahng, “Paired gap states in a semiconducting carbon nanotube: Deep and shallow levels,” Physical Review Letters, vol. 95, p. 166402, 2005.Google Scholar
  102. 102.
    M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber, “Atomically resolved single-walled carbon nanotube intramolecular junctions,” Science, vol. 291, pp. 97–100, 2001.Google Scholar
  103. 103.
    L. C. Venema, J. W. Janssen, M. R. Buitelaar, J. W. G. Wildöer, S. G. Lemay, L. P. Kouwenhoven, and C. Dekker, “Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes,” Physical Review B, vol. 62, pp. 5238–5244, 2000.Google Scholar
  104. 104.
    C. Gómez-Navarro, P. J. De Pablo, J. Gómez-Herrero, B. Biel, F. J. Garcia-Vidal, A. Rubio, and F. Flores, “Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime,” Nature Materials, vol. 4, pp. 534–539, 2005.Google Scholar
  105. 105.
    O. Dubay and G. Kresse, “Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes,” Physical Review B, vol. 67, p. 035401, 2003.Google Scholar
  106. 106.
    Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2941–2944, 2000.Google Scholar
  107. 107.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, “High-field quasiballistic transport in short carbon nanotubes,” Physical Review Letters, vol. 92, p. 106804, 2004.Google Scholar
  108. 108.
    J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, “Electron–phonon scattering in metallic single-walled carbon nanotubes,” Nano Letters, vol. 4, pp. 517–520, 2004.Google Scholar
  109. 109.
    E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. Dai, “Negative differential conductance and hot phonons in suspended nanotube molecular wires,” Physical Review Letters, vol. 95, p. 155505, 2005.Google Scholar
  110. 110.
    M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electron transport and hot phonons in carbon nanotubes,” Physical Review Letters, vol. 95, p. 236802, 2005.Google Scholar
  111. 111.
    G. D. Mahan, “Electron-optical phonon interaction in carbon nanotubes,” Physical Review B, vol. 68, p. 125409, 2003.Google Scholar
  112. 112.
    V. Perebeinos, J. Tersoff, and P. Avouris, “Electron–phonon interaction and transport in semiconducting carbon nanotubes,” Physical Review Letters, vol. 94, p. 086802, 2005.Google Scholar
  113. 113.
    M. A. Kuroda, A. Cangellaris, and J.-P. Leburton, “Nonlinear transport and heat dissipation in metallic carbon nanotubes,” Physical Review Letters, vol. 95, p. 266803, 2005.Google Scholar
  114. 114.
    M. Lazzeri and F. Mauri, “Coupled dynamics of electrons and phonons in metallic nanotubes: Current saturation from hot-phonon generation,” Physical Review B, vol. 73, p. 165419, 2006.Google Scholar
  115. 115.
    H. C. d'Honincthun, S. Galdin-Retailleau, J. Sée, and P. Dollfus, “Electron–phonon scattering and ballistic behavior in semiconducting carbon nanotubes,” Applied Physics Letters, vol. 87, p. 172112, 2005.Google Scholar
  116. 116.
    J. Guo, “A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors,” Journal of Applied Physics, vol. 98, p. 063519, 2005.Google Scholar
  117. 117.
    J. Guo and M. Lundstrom, “Role of phonon scattering in carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 86, p. 193103, 2005.Google Scholar
  118. 118.
    G. Pennington and N. Goldsman, “Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes,” Physical Review B, vol. 68, p. 045426, 2003.Google Scholar
  119. 119.
    A. Verma, M. Z. Kauser, and P. P. Ruden, “Ensemble Monte Carlo transport simulations for semiconducting carbon nanotubes,” Journal of Applied Physics, vol. 97, p. 114319, 2005.Google Scholar
  120. 120.
    T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” Journal of Physics: Condensed Matter, vol. 16, pp. R553–R580, 2004.Google Scholar
  121. 121.
    T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Letters, vol. 4, pp. 35–39, 2004.Google Scholar
  122. 122.
    X. Zhou, J.-Y. Park, S. Huang, J. Liu, and P. L. McEuen, “Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors,” Physical Review Letters, vol. 95, p. 146805, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ji-Yong Park
    • 1
  1. 1.Department of Physics and Division of Energy Systems ResearchAjou UniversityKorea

Personalised recommendations