Advertisement

Immunotherapy of AML

  • Gheath Alatrash
  • Jeffrey J. Molldrem
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 145)

Abstract

The applications of chemotherapy for the treatment of AML have been unchanged over the past three decades, with only 30% of patients demonstrating disease-free survival (DFS) [118]. Despite achieving CR following induction chemotherapy, the majority of patients relapse and succumb to their disease [6]. In view of the limitations encountered by cytarabine/anthracycline based regimes, attention has shifted to immunotherapy as a means to treat AML and provide significant long-term DFS. This chapter will discuss the role of the immune system and recent advances in immunotherapy for the treatment of AML, focusing on cellular and non-cellular approaches.

Keywords

Natural Killer Cell Chronic Myeloid Leukemia Hematopoietic Stem Cell Transplant Allogeneic Hematopoietic Stem Cell Transplant Donor Lymphocyte Infusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adida C, Haioun C, Gaulard P, et al. Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood. 2000;96:1921–1925.PubMedGoogle Scholar
  2. 2.
    Alyea EP, Soiffer RJ, Canning C, et al. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood. 1998;91:3671–3680.PubMedGoogle Scholar
  3. 3.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252.PubMedCrossRefGoogle Scholar
  4. 4.
    Barnes DW, Loutit JF. Treatment of murine leukaemia with x-rays and homologous bone marrow. II. Br J Haematol. 1957;3:241–252.PubMedCrossRefGoogle Scholar
  5. 5.
    Bellantuono I, Gao L, Parry S, et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood. 2002;100:3835–3837.PubMedCrossRefGoogle Scholar
  6. 6.
    Bennett JM, Young ML, Andersen JW, et al. Long-term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group experience. Cancer. 1997;80:2205–2209.PubMedCrossRefGoogle Scholar
  7. 7.
    Blaise D, Attal M, Pico JL, et al. The use of a sequential high dose recombinant interleukin 2 regimen after autologous bone marrow transplantation does not improve the disease free survival of patients with acute leukemia transplanted in first complete remission. Leuk Lymphoma. 1997;25:469–478.PubMedGoogle Scholar
  8. 8.
    Blaise D, Attal M, Reiffers J, et al. Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur Cytokine Netw. 2000;11:91–98.PubMedGoogle Scholar
  9. 9.
    Borden EC, Hogan TF, Voelkel JG. Comparative antiproliferative activity in vitro of natural interferons alpha and beta for diploid and transformed human cells. Cancer Res. 1982;42:4948–4953.PubMedGoogle Scholar
  10. 10.
    Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89:3503–3521.PubMedGoogle Scholar
  11. 11.
    Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res. 2006;35:263–278.PubMedCrossRefGoogle Scholar
  12. 12.
    Boyer MW, Vallera DA, Taylor PA, et al. The role of B7 costimulation by murine acute myeloid leukemia in the generation and function of a CD8+ T-cell line with potent in vivo graft-versus-leukemia properties. Blood. 1997;89:3477–3485.PubMedGoogle Scholar
  13. 13.
    Braud VM, Allan DS, O'Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–799.PubMedCrossRefGoogle Scholar
  14. 14.
    Brossart P, Schneider A, Dill P, et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res. 2001;61:6846–6850.PubMedGoogle Scholar
  15. 15.
    Brouwer E, Stegeman CA, Huitema MG, Limburg PC, Kallenberg CG. T cell reactivity to proteinase 3 and myeloperoxidase in patients with Wegener's granulomatosis (WG). Clin Exp Immunol. 1994;98:448–453.PubMedCrossRefGoogle Scholar
  16. 16.
    Buggins AG, Lea N, Gaken J, et al. Effect of costimulation and the microenvironment on antigen presentation by leukemic cells. Blood. 1999;94:3479–3490.PubMedGoogle Scholar
  17. 17.
    Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol. 2001;167:6021–6030.PubMedGoogle Scholar
  18. 18.
    Burnett AK, Wheatley K, Goldstone AH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol. 2002;118:385–400.PubMedCrossRefGoogle Scholar
  19. 19.
    Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100:4325–4336.PubMedCrossRefGoogle Scholar
  20. 20.
    Cassileth PA, Harrington DP, Appelbaum FR, et al. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission [see comment]. N Engl J Med 1649;339:1649–1656.Google Scholar
  21. 21.
    Chan L, Hardwick NR, Guinn BA, et al. An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother. 2006;55:1017–1024.PubMedCrossRefGoogle Scholar
  22. 22.
    Chomienne C, Ballerini P, Balitrand N, et al. The retinoic acid receptor alpha gene is rearranged in retinoic acid-sensitive promyelocytic leukemias. Leukemia. 1990;4:802–807.PubMedGoogle Scholar
  23. 23.
    Claret EJ, Alyea EP, Orsini E, et al. Characterization of T cell repertoire in patients with graft-versus-leukemia after donor lymphocyte infusion. J Clin Invest. 1997;100:855–866.PubMedCrossRefGoogle Scholar
  24. 24.
    Collins RH, Jr, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15:433–444.PubMedGoogle Scholar
  25. 25.
    Datta AR, Barrett AJ, Jiang YZ, et al. Distinct T cell populations distinguish chronic myeloid leukaemia cells from lymphocytes in the same individual: a model for separating GVHD from GVL reactions. Bone Marrow Transplant. 1994;14:517–524.PubMedGoogle Scholar
  26. 26.
    Dengler R, Munstermann U, al-Batran S, et al. Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J Haematol. 1995;89:250–257.PubMedCrossRefGoogle Scholar
  27. 27.
    Dickinson AM, Wang XN, Sviland L, et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med. 2002;8:410–414.PubMedCrossRefGoogle Scholar
  28. 28.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998.PubMedCrossRefGoogle Scholar
  29. 29.
    Entwistle J, Zhang S, Yang B, et al. Characterization of the murine gene encoding the hyaluronan receptor RHAMM. Gene 1995;163:233–238.PubMedCrossRefGoogle Scholar
  30. 30.
    Exley M, Garcia J, Wilson SB, et al. CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes. Immunology. 2000;100:37–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Fais F, Morabito F, Stelitano C, et al. CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates alpha-galactosylceramide presentation to natural killer T lymphocytes. Int J Cancer. 2004;109:402–411.PubMedCrossRefGoogle Scholar
  32. 32.
    Falkenburg JH, van de Corput L, Marijt EW, Willemze R. Minor histocompatibility antigens in human stem cell transplantation. Exp Hematol 2003;31:743–751.PubMedCrossRefGoogle Scholar
  33. 33.
    Ferrara JL, Deeg HJ. Graft-versus-host disease. N Engl J Med. 1991;324:667–674.PubMedCrossRefGoogle Scholar
  34. 34.
    Fowler DH, Breglio J, Nagel G, Eckhaus MA, Gress RE. Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. J Immunol. 1996;157:4811–4821.PubMedGoogle Scholar
  35. 35.
    Franssen CF, Stegeman CA, Kallenberg CG, et al. Antiproteinase 3- and antimyeloperoxidase-associated vasculitis. Kidney Int. 2000;57:2195–2206.PubMedCrossRefGoogle Scholar
  36. 36.
    Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol. 2002;3:867–874.PubMedCrossRefGoogle Scholar
  37. 37.
    Gaiger A, Reese V, Disis ML, Cheever MA. Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood. 2000;96:1480–1489.PubMedGoogle Scholar
  38. 38.
    Gale RP, Horowitz MM, Ash RC, et al. Identical-twin bone marrow transplants for leukemia. Ann Intern Med. 1994;120:646–652.PubMedGoogle Scholar
  39. 39.
    Ganser A, Heil G, Seipelt G, et al. Intensive chemotherapy with idarubicin, ara-C, etoposide, and m-AMSA followed by immunotherapy with interleukin-2 for myelodysplastic syndromes and high-risk Acute Myeloid Leukemia (AML). Ann Hematol. 2000;79:30–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Giaccone G, Punt CJ, Ando Y, et al. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res. 2002;8:3702–3709.PubMedGoogle Scholar
  41. 41.
    Giralt S, Hester J, Huh Y, et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood. 1995;86:4337–4343.PubMedGoogle Scholar
  42. 42.
    Giralt SA, Champlin RE. Leukemia relapse after allogeneic bone marrow transplantation: a review. Blood. 1994;84:3603–3612.PubMedGoogle Scholar
  43. 43.
    Giralt SA, Kolb HJ. Donor lymphocyte infusions. Curr Opin Oncol. 1996;8:96–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today. 2000;21:573–583.PubMedCrossRefGoogle Scholar
  45. 45.
    Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1302–1311.PubMedCrossRefGoogle Scholar
  46. 46.
    Greiner J, GiannopoulosK, Li L, et al. RHAMM/CD168-R3 Peptide vaccination of HLA-A2+ patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and multiple myeloma (MM). American Society of Hematology Annual Meeting, 2005;106. Abstract 2781.Google Scholar
  47. 47.
    Greiner J, Li L, Ringhoffer M, Barth TF, et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood. 2005;106:938–945.PubMedCrossRefGoogle Scholar
  48. 48.
    Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 1998;92:2322–2333.PubMedGoogle Scholar
  49. 49.
    Gutterman JU, Hersh EM, Rodriguez V, et al. Chemoimmunotherapy of adult acute leukaemia. Prolongation of remission in myeloblastic leukaemia with B.C.G. Lancet. 1405;2:1405–1409.Google Scholar
  50. 50.
    Hall CL, Yang B, Yang X, et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell. 1995;82:19–26.Google Scholar
  51. 51.
    Hambach L, Nijmeijer BA, Aghai Z, et al. Human cytotoxic T lymphocytes specific for a single minor histocompatibility antigen HA-1 are effective against human lymphoblastic leukaemia in NOD/scid mice. Leukemia 2006;20:371–374.PubMedCrossRefGoogle Scholar
  52. 52.
    Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood. 1997;90:3245–3287.PubMedGoogle Scholar
  53. 53.
    Hayakawa Y, Godfrey DI, Smyth MJ. Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem. 2004;11:241–252.PubMedCrossRefGoogle Scholar
  54. 54.
    Hayakawa Y, Rovero S, Forni G, Smyth MJ. Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA. 2003;100:9464–9469.PubMedCrossRefGoogle Scholar
  55. 55.
    Herberman RB, Ortaldo JR. Natural killer cells: their roles in defenses against disease. Science. 1981;214:24–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Heslop HE, Stevenson FK, Molldrem JJ. Immunotherapy of hematologic malignancy. Hematol Am Soc Hematol Educ Program. 2003;331–349.Google Scholar
  57. 57.
    Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ, Saunders GF. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms' tumor suppressor gene WT1. Cancer Res. 1995;55:5386–5389.PubMedGoogle Scholar
  58. 58.
    Hiesse C, Larue JR, Kriaa F, et al. Incidence and type of malignancies occurring after renal transplantation in conventionally and in cyclosporine-treated recipients: single-center analysis of a 20-year period in 1600 patients. Transplant Proc. 1995;27:2450–2451.PubMedGoogle Scholar
  59. 59.
    Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–562.PubMedGoogle Scholar
  60. 60.
    Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 1795;356:1795–1799.Google Scholar
  61. 61.
    Ishikawa A, Motohashi S, Ishikawa E, et al. A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res. 1910;11:1910–1917.Google Scholar
  62. 62.
    Kaufmann SH, Steensma DP. On the TRAIL of a new therapy for leukemia. Leukemia. 2005;19:2195–2202.PubMedCrossRefGoogle Scholar
  63. 63.
    Keating S, de Witte T, Suciu S, et al. The influence of HLA-matched sibling donor availability on treatment outcome for patients with AML: an analysis of the AML 8A study of the EORTC Leukaemia Cooperative Group and GIMEMA. European Organization for Research and Treatment of Cancer. Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto. Br J Haematol. 1998;102:1344–1353.PubMedCrossRefGoogle Scholar
  64. 64.
    Keilholz U, Letsch A, Asemissen A, et al. Clinical and immune responses of WT1-peptide vaccination in patients with acute myeloid leukemia. ASCO Ann Meet Proc. 2006;24:2511.Google Scholar
  65. 65.
    Kell WJ, Burnett AK, Chopra R, et al. A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood. 2003;102:4277–4283.PubMedCrossRefGoogle Scholar
  66. 66.
    Kolb HJ, Holler E. Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol. 1997;9:139–145.PubMedCrossRefGoogle Scholar
  67. 67.
    Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86:2041–2050.PubMedGoogle Scholar
  68. 68.
    Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–1452.PubMedCrossRefGoogle Scholar
  69. 69.
    Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol. 1996;157:4741–4745.PubMedGoogle Scholar
  70. 70.
    Lee JJ, Kook H, Park MS, et al. Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J Clin Apher. 2004;19:66–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Li Y, Li H, Wang MN, et al. Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood. 2004;104:1137–1144.PubMedCrossRefGoogle Scholar
  72. 72.
    Lindmark A, Gullberg U, Osson I. Processing and intracellular transport of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937-modulation by brefeldin A, ammonium chloride, and monensin. J Leukoc Biol. 1994;55:50–57.PubMedGoogle Scholar
  73. 73.
    Lokhorst HM, Schattenberg A, Cornelissen JJ, Thomas LL, Verdonck LF. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood. 1997;90:4206–4211.PubMedGoogle Scholar
  74. 74.
    Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood. 1995;86:1261–1268.PubMedGoogle Scholar
  75. 75.
    Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia. 2004;18:165–166.PubMedCrossRefGoogle Scholar
  76. 76.
    Maraninchi D, Gluckman E, Blaise D, et al. Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet. 1987;2:175–178.PubMedCrossRefGoogle Scholar
  77. 77.
    Maraninchi D, Vey N, Viens P, et al. A phase II study of interleukin-2 in 49 patients with relapsed or refractory acute leukemia. Leuk Lymphoma. 1998;31:343–349.PubMedGoogle Scholar
  78. 78.
    Marijt E, Wafelman A, van der Hoorn M, et al. Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica. 2007;92:72–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Marijt WA, Heemskerk MH, Kloosterboer FM, et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA. 2003;100:2742–2747.PubMedCrossRefGoogle Scholar
  80. 80.
    Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991;78:2120–2130.PubMedGoogle Scholar
  81. 81.
    Mathe G, Amiel JL, Schwarzenberg L, et al. Successful allogenic bone marrow transplantation in man: chimerism, induced specific tolerance and possible anti-leukemic effects. Blood. 1965;25:179–196.PubMedGoogle Scholar
  82. 82.
    Mathe G, Schwarzenberg L, Delgado M, De Vassal F. Active immunotherapy trials on acute lymphoid leukemia lymphosarcoma and acute myeloid leukemia. Eur J Cancer. 1977;13:445–455.PubMedGoogle Scholar
  83. 83.
    Meloni G, Foa R, Vignetti M, et al. Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood. 1994;84:2158–2163.PubMedGoogle Scholar
  84. 84.
    Meloni G, Vignetti M, Andrizzi C, Capria S, Foa R, Mandelli F. Interleukin-2 for the treatment of advanced acute myelogenous leukemia patients with limited disease: updated experience with 20 cases. Leuk Lymphoma. 1996;21:429–435.PubMedCrossRefGoogle Scholar
  85. 85.
    Meloni G, Vignetti M, Pogliani E, et al. Interleukin-2 therapy in relapsed acute myelogenous leukemia. Cancer J Sci Am. 1997;3 (suppl 1):S43–47.PubMedGoogle Scholar
  86. 86.
    Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia. 2003;17:1068–1077.PubMedCrossRefGoogle Scholar
  87. 87.
    Miller JS. The biology of natural killer cells in cancer, infection, and pregnancy. Exp Hematol. 2001;29:1157–1168.PubMedCrossRefGoogle Scholar
  88. 88.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–3057.PubMedCrossRefGoogle Scholar
  89. 89.
    Miller JS, Tessmer-Tuck J, Pierson BA, et al. Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant. 1997;3:34–44.PubMedGoogle Scholar
  90. 90.
    Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM. A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res. 1999;59:2675–2681.PubMedGoogle Scholar
  91. 91.
    Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6:1018–1023.PubMedCrossRefGoogle Scholar
  92. 92.
    Mueller BU, Pizzo PA. Cancer in children with primary or secondary immunodeficiencies [see comment]. J Pediatr. 1995;126:1–10.PubMedCrossRefGoogle Scholar
  93. 93.
    Mulford DA, Jurcic JG. Antibody-based treatment of acute myeloid leukaemia. Expert Opin Biol Ther. 2004;4:95–105.PubMedCrossRefGoogle Scholar
  94. 94.
    Murphy WJ, Longo DL. The potential role of NK cells in the separation of graft-versus-tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol Rev. 1997;157:167–176.PubMedCrossRefGoogle Scholar
  95. 95.
    Mutis T, Ghoreschi K, Schrama E, et al. Efficient induction of minor histocompatibility antigen HA-1-specific cytotoxic T-cells using dendritic cells retrovirally transduced with HA-1-coding cDNA. Biol Blood Marrow Transplant. 2002;8:412–419.PubMedCrossRefGoogle Scholar
  96. 96.
    Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood. 1999;93:2336–2341.PubMedGoogle Scholar
  97. 97.
    Nakagawa R, Motoki K, Ueno H, et al. Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res. 1998;58:1202–1207.PubMedGoogle Scholar
  98. 98.
    Oka Y, Tsuboi A, Taguchi T, et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101:13885–13890.PubMedCrossRefGoogle Scholar
  99. 99.
    Peiper SC, Ashmun RA, Look AT. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen. Blood. 1988;72:314–321.PubMedGoogle Scholar
  100. 100.
    Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol. 17:297–329.Google Scholar
  101. 101.
    Pulendran B, Lingappa J, Kennedy MK, et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol. 1997;159:2222–2231.PubMedGoogle Scholar
  102. 102.
    Rao NV, Rao GV, Marshall BC, Hoidal JR. Biosynthesis and processing of proteinase 3 in U937 cells. Processing pathways are distinct from those of cathepsin G. J Biol Chem. 1996;271:2972–2978.PubMedCrossRefGoogle Scholar
  103. 103.
    Reiffers J, Stoppa AM, Attal M, et al. Allogeneic vs autologous stem cell transplantation vs chemotherapy in patients with acute myeloid leukemia in first remission: the BGMT 87 study. Leukemia. 1996;10:1874–1882.PubMedGoogle Scholar
  104. 104.
    Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–2438.PubMedGoogle Scholar
  105. 105.
    Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100.PubMedCrossRefGoogle Scholar
  106. 106.
    Schirrmann T, Pecher G. Specific targeting of CD33(+) leukemia cells by a natural killer cell line modified with a chimeric receptor. Leuk Res. 2005;29:301–306.PubMedCrossRefGoogle Scholar
  107. 107.
    Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22:3741–3750.PubMedCrossRefGoogle Scholar
  108. 108.
    Schulz TF, Boshoff CH, Weiss RA. HIV infection and neoplasia [see comment]. Lancet. 1996;348:587–591.PubMedCrossRefGoogle Scholar
  109. 109.
    Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–334.PubMedCrossRefGoogle Scholar
  110. 110.
    Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–1111.PubMedCrossRefGoogle Scholar
  111. 111.
    Shimizu K, Hidaka M, Kadowaki N, et al. Evaluation of the function of human invariant NKT cells from cancer patients using alpha-galactosylceramide-loaded murine dendritic cells. J Immunol. 2006;177:3484–3492.PubMedGoogle Scholar
  112. 112.
    Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A. Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia. 2005;19:2215–2222.PubMedCrossRefGoogle Scholar
  113. 113.
    Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96:4075–4083.PubMedGoogle Scholar
  114. 114.
    Spada FM, Borriello F, Sugita M, Watts GF, Koezuka Y, Porcelli SA. Low expression level but potent antigen presenting function of CD1d on monocyte lineage cells. Eur J Immunol. 2000;30:3468–3477.PubMedCrossRefGoogle Scholar
  115. 115.
    Spisek R, Chevallier P, Morineau N, et al. Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res. 2002;62:2861–2868.PubMedGoogle Scholar
  116. 116.
    Suciu S, Mandelli F, de Witte T, et al. Allogeneic compared with autologous stem cell transplantation in the treatment of patients younger than 46 years with acute myeloid leukemia (AML) in first complete remission (CR1): an intention-to-treat analysis of the EORTC/GIMEMAAML-10 trial. Blood. 2003;102:1232–1240.PubMedCrossRefGoogle Scholar
  117. 117.
    Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21:66–71.PubMedCrossRefGoogle Scholar
  118. 118.
    Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood. 2005;106:1154–1163.PubMedCrossRefGoogle Scholar
  119. 119.
    Timonen T, Ortaldo JR, Herberman RB. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981;153:569–582.PubMedCrossRefGoogle Scholar
  120. 120.
    Timonen T, Saksela E. Isolation of human NK cells by density gradient centrifugation. J Immunol Methods. 1980;36:285–291.PubMedCrossRefGoogle Scholar
  121. 121.
    Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J Immunol. 1999;163:2387–2391.PubMedGoogle Scholar
  122. 122.
    Tsimberidou AM, Giles FJ, Estey E, O'Brien S, Keating MJ, Kantarjian HM. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol. 2006;132:398–409.PubMedGoogle Scholar
  123. 123.
    Tsuboi A, Oka Y, Ogawa H, et al. Constitutive expression of the Wilms' tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G-CSF). Leuk Res. 1999;23:499–505.PubMedCrossRefGoogle Scholar
  124. 124.
    Tsuji T, Yasukawa M, Matsuzaki J, et al. Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood. 2005;106:470–476.PubMedCrossRefGoogle Scholar
  125. 125.
    Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–763.PubMedCrossRefGoogle Scholar
  126. 126.
    van Der Velden VH, te Marvelde JG, Hoogeveen PG, Bernstein ID, Houtsmuller AB, Berger MS, van Dongen JJ. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood. 2001;97:3197–3204.CrossRefGoogle Scholar
  127. 127.
    Wu CJ, Yang XF, McLaughlin S, et al. Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia. J Clin Invest. 2000;106:705–714.PubMedCrossRefGoogle Scholar
  128. 128.
    Xue SA, Gao L, Hart D, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood. 2005;106:3062–3067.PubMedCrossRefGoogle Scholar
  129. 129.
    Yanada M, Matsuo K, Emi N, Naoe T. Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission: a metaanalysis. Cancer. 2005;103:1652–1658.PubMedCrossRefGoogle Scholar
  130. 130.
    Zeis M, Siegel S, Wagner A, et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol. 2003;170:5391–5397.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gheath Alatrash
    • 1
  • Jeffrey J. Molldrem
    • 2
  1. 1.Division of Cancer MedicineUniversity of Texas MD, Anderson Cancer CenterHoustonUSA
  2. 2.Division of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations