Skip to main content

Murine Models of Human Acute Myeloid Leukemia

  • Chapter
  • First Online:
Acute Myelogenous Leukemia

Part of the book series: Cancer Treatment and Research ((CTAR,volume 145))

Abstract

Primary human AML cells can be isolated and studied in vitro, but many experimental questions can only be addressed using in vivo models. In particular, tractable animal models are needed to test novel therapies. The genetic complexity of human AML poses significant challenges for the generation of reliable animal models.

The hematopoietic systems of both zebrafish (Danio rerio) and Drosophila have been well characterized (reviewed in [5, 31]). Both organisms are well suited to forward genetics mutagenesis screens. Although this approach has been useful for identification of mutants with hematopoietic phenotypes (e.g., cloche), the impact on cancer biology and hematopoietic malignancies in particular has been limited. A zebrafish model of acute lymphoblastic leukemia has been generated [37] and Drosophila models have shed light on the biology of epithelial tumors (reviewed in [60]). Nonetheless, in vivo modeling of human AML relies most heavily on mice. Most cellular, molecular, and developmental features of the hematopoietic system are well conserved across mammalian species. The availability of the human and mouse genome sequences and the capability of manipulating the mouse genome make mice the most valuable model organism for AML research. Mice have additional practical value because they have a short reproductive cycle and are relatively inexpensive to house.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ailles LE, Gerhard B, Kawagoe H, Hogge DE. Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood. 1999;94(5):1761–1772.

    CAS  PubMed  Google Scholar 

  2. Bakker AB, van den Oudenrijn S, Bakker AQ, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443–8450.

    Article  CAS  PubMed  Google Scholar 

  3. Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316(5824):600–604.

    Article  CAS  PubMed  Google Scholar 

  4. Bedigian HG, Johnson DA, Jenkins NA, Copeland NG, Evans R. Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J Virol. 1984;51(3):586–594.

    CAS  PubMed  Google Scholar 

  5. Berman JN, Kanki JP, Look AT. Zebrafish as a model for myelopoiesis during embryogenesis. Exp Hematol. 2005;33(9):997–1006.

    Article  CAS  PubMed  Google Scholar 

  6. Blaydes SM, Kogan SC, Truong BT, et al. Retroviral integration at the Epi1 locus cooperates with Nf1 gene loss in the progression to acute myeloid leukemia. J Virol. 2001;75(19):9427–9434.

    Article  CAS  PubMed  Google Scholar 

  7. Blunt T, Gell D, Fox M, et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA. 1996;93(19):10285–10290.

    Article  CAS  PubMed  Google Scholar 

  8. Bogue M. Mouse Phenome Project: understanding human biology through mouse genetics and genomics. J Appl Physiol. 2003;95(4):1335–1337.

    CAS  PubMed  Google Scholar 

  9. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997. 3(7):730–737.

    Article  CAS  PubMed  Google Scholar 

  10. Buchholz F., Refaeli Y, Trumpp A, Bishop JM. Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep. 2000;1(2):133–139.

    Article  CAS  PubMed  Google Scholar 

  11. Castilla LH, Perrat P, Martinez NJ, et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci USA. 2004;101(14):4924–4929.

    Article  CAS  PubMed  Google Scholar 

  12. Castilla LH, Garrett L, Adya N, et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet. 1999;23(2):144–146.

    Article  CAS  PubMed  Google Scholar 

  13. Cleary HJ, Wright E, Plumb M. Specificity of loss of heterozygosity in radiation-induced mouse myeloid and lymphoid leukaemias. Int J Radiat Biol. 1999;75(10):1223–1230.

    Article  CAS  PubMed  Google Scholar 

  14. Cook WD, McCaw BJ, Herring C, et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood. 2004;104(12):3437–3444.

    Article  CAS  PubMed  Google Scholar 

  15. Dave UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science. 2004;303(5656):333.

    Article  PubMed  Google Scholar 

  16. Du Y, Jenkins NA, Copeland NG. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood. 2005;106(12):3932–3939.

    Article  CAS  PubMed  Google Scholar 

  17. Fenske TS, McMahon C, Edwin D, et al. Identification of candidate alkylator-induced cancer susceptibility genes by whole genome scanning in mice. Cancer Res. 2006;66(10). In press.

    Google Scholar 

  18. Fenske TS, Pengue G, Mathews V, et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA. 2004;101(42):15184–15189.

    Article  CAS  PubMed  Google Scholar 

  19. Feuring-Buske M, Hogge DE. Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood. 2001;97(12):3882–3889.

    Article  CAS  PubMed  Google Scholar 

  20. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183(4):1797–1806.

    Article  CAS  PubMed  Google Scholar 

  21. Graubert TA, Hug BA, Wesselschmidt R, et al. Stochastic, stage-specific mechanisms account for the variegation of a human globin transgene. Nucleic Acids Res. 1998;26(12):2849–2858.

    Article  CAS  PubMed  Google Scholar 

  22. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood. 1997;89(2):376–387.

    CAS  PubMed  Google Scholar 

  23. Guzman ML, Rossi RM, Karnischky L, et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105(11):4163–4169.

    Article  CAS  PubMed  Google Scholar 

  24. Hayata I, Seki M, Yoshida K, et al. Chromosomal aberrations observed in 52 mouse myeloid leukemias. Cancer Res. 1983;43(1):367–373.

    CAS  PubMed  Google Scholar 

  25. Hess DA, Meyerrose TE, Wirthlin L, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104(6):1648–1655.

    Article  CAS  PubMed  Google Scholar 

  26. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  27. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6(6):587–596.

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–1321.

    Article  CAS  PubMed  Google Scholar 

  29. Iwasaki M, Kuwata T, Yamazaki Y, et al. Identification of cooperative genes for NUP98-HOXA9 in myeloid leukemogenesis using a mouse model. Blood. 2005;105(2):784–793.

    Article  CAS  PubMed  Google Scholar 

  30. Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14(10):1777–1784.

    Article  CAS  PubMed  Google Scholar 

  31. Jung SH, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development. 2005;132(11):2521–2533.

    Article  CAS  PubMed  Google Scholar 

  32. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99(1):310–318.

    Article  CAS  PubMed  Google Scholar 

  33. Kelly LM, Kutok JL, Williams IR, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA. 2002;99(12):8283–8288.

    Article  CAS  PubMed  Google Scholar 

  34. Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003;3(7):477–488.

    Article  CAS  PubMed  Google Scholar 

  35. Kollet O, Peled A, Byk T, et al. beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood. 2000;95(10):3102–3105.

    CAS  PubMed  Google Scholar 

  36. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. Embo J. 2001;20(3):350–361.

    Article  CAS  PubMed  Google Scholar 

  37. Langenau DM, Traver D, Ferrando AA, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science. 2003;299(5608):887–890.

    Article  CAS  PubMed  Google Scholar 

  38. Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–648.

    Article  CAS  PubMed  Google Scholar 

  39. Larochelle A, Vormoor J, Hanenberg H, et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med. 1996;2(12):1329–1337.

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Shen H, Himmel KL, et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet. 1999;23(3):348–353.

    Article  CAS  PubMed  Google Scholar 

  41. Lumkul R, Gorin NC, Malehorn MT, et al. Human AML cells in NOD/SCID mice: engraftment potential and gene expression. Leukemia. 2002;16(9):1818–1826.

    Article  CAS  PubMed  Google Scholar 

  42. Malkinson AM. Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp Lung Res. 1998;24(4):541–555.

    Article  CAS  PubMed  Google Scholar 

  43. Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med. 2003;9(7):959–963.

    Article  CAS  PubMed  Google Scholar 

  44. Mucenski ML, Taylor BA, Ihle JN, et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol. 1988;8(1):301–308.

    CAS  PubMed  Google Scholar 

  45. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84(2):321–330.

    Article  CAS  PubMed  Google Scholar 

  46. Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood. 1998;91(9):3134–3143.

    CAS  PubMed  Google Scholar 

  47. Pearce DJ, Taussig D, Zibara K, et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood. 2006;107(3):1166–1173.

    Article  CAS  PubMed  Google Scholar 

  48. Pearce DJ, Taussig D, Simpson C, et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells. 2005;23(6):752–760.

    Article  CAS  PubMed  Google Scholar 

  49. Prochazka M, Gaskins HR, Shultz LD, Leiter EH. The nonobese diabetic scid mouse: model for spontaneous thymoma genesis associated with immunodeficiency. Proc Natl Acad Sci USA. 1992;89(8):3290–3294.

    Article  CAS  PubMed  Google Scholar 

  50. Ren R. Modeling the dosage effect of oncogenes in leukemogenesis. Curr Opin Hematol. 2004;11(1):25–34.

    Article  PubMed  Google Scholar 

  51. Resnitzky P, Estrov Z, Haran-Ghera N. High incidence of acute myeloid leukemia in SJL/J mice after X-irradiation and corticosteroids. Leuk Res. 1985;9(12):1519–1528.

    Article  CAS  PubMed  Google Scholar 

  52. Rhoades KL, Hetherington CJ, Harakawa N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood. 2000;96(6):2108–2115.

    CAS  PubMed  Google Scholar 

  53. Rombouts WJ, Martens AC, Ploemacher RE. Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia. 2000;14(5):889–897.

    Article  CAS  PubMed  Google Scholar 

  54. Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, Phipps EL. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA. 1979;76(11):5818–5819.

    Article  CAS  PubMed  Google Scholar 

  55. Shultz LD, Banuelos SJ, Leif J, et al. Regulation of human short-term repopulating cell (STRC) engraftment in NOD/SCID mice by host CD122+ cells. Exp Hematol. 2003;31(6):551–558.

    Article  PubMed  Google Scholar 

  56. Stover EH, Chen J, Lee BH, et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood. 2005;106(9):3206–3213.

    Article  CAS  PubMed  Google Scholar 

  57. Tomasson MH, Sternberg DW, Williams IR, et al. Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581. J Clin Invest. 2000;105(4):423–432.

    Article  CAS  PubMed  Google Scholar 

  58. Torok S, Borgulya G, Lobmayer P, Jakab Z, Schuler D, Fekete G. Childhood leukaemia incidence in Hungary, 1973-2002. Interpolation model for analysing the possible effects of the Chernobyl accident. Eur J Epidemiol. 2005;20(11):899–906.

    Article  PubMed  Google Scholar 

  59. van Rhenen A, van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110(7):2659–2666.

    Article  PubMed  Google Scholar 

  60. Vidal M, Cagan RL. Drosophila models for cancer research. Curr Opin Genet Dev. 2006;16(1):10–16.

    Article  CAS  PubMed  Google Scholar 

  61. Walter MJ, Park JS, Ries RE, et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci USA. 2005;102(35):12513–12518.

    Article  CAS  PubMed  Google Scholar 

  62. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93(8):3444–3449.

    Article  CAS  PubMed  Google Scholar 

  63. Westervelt P, Lane AA, Pollock JL, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood. 2003;102(5):1857–1865.

    Article  CAS  PubMed  Google Scholar 

  64. Westervelt P, Ley TJ. Seed versus soil: the importance of the target cell for transgenic models of human leukemias. Blood. 1999;93(7):2143–2148.

    CAS  PubMed  Google Scholar 

  65. Wulf GG, Wang RY, Kuehnle I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001;98(4):1166–1173.

    Article  CAS  PubMed  Google Scholar 

  66. Yamashita N, Osato M, Huang L, et al. Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukaemogenesis in BXH2 mice. Br J Haematol. 2005;131(4):495–507.

    Article  CAS  PubMed  Google Scholar 

  67. Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet. 1997;15(3):303–306.

    Article  CAS  PubMed  Google Scholar 

  68. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–482.

    Article  CAS  PubMed  Google Scholar 

  69. Yuan Y, Zhou L, Miyamoto T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA. 2001;98(18):10398–10403.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang S, Ramsay ES, Mock BA. Cdkn2a, the cyclin-dependent kinase inhibitor encoding p16INK4a and p19ARF, is a candidate for the plasmacytoma susceptibility locus, Pctr1. Proc Natl Acad Sci USA. 1998;95(5):2429–2434.

    Article  CAS  PubMed  Google Scholar 

  71. Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci USA. 2000;97(24):13306–13311.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the G&P Foundation (T.A.G.). Jan Nolta, Michael Tomasson, Matthew Walter, and Tim Ley provided valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Graubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fortier, J.M., Graubert, T.A. (2009). Murine Models of Human Acute Myeloid Leukemia. In: Nagarajan, L. (eds) Acute Myelogenous Leukemia. Cancer Treatment and Research, vol 145. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69259-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69259-3_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-69257-9

  • Online ISBN: 978-0-387-69259-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics