MicroRNAs: New Players in AML Pathogenesis

  • Milena S. Nicoloso
  • Bharti Jasra
  • George A. Calin
Part of the Cancer Treatment and Research book series (CTAR, volume 145)


MicroRNAs (miRNAs) constitute a class of regulatory non-coding RNAs involved in gene silencing pathways. They are single-stranded RNA molecules ranging from 19 to 25 nucleotides and may be considered the natural counterparts of small interfering RNAs (siRNAs). Because of their fine regulation of gene expression at the post-transcriptional level, miRNAs are crucial players in several regulatory pathways, including developmental timing, organogenesis, differentiation, hematopoiesis, apoptosis, cell proliferation, and tumorigenesis [2]. The regulatory network of miRNA and messenger RNA (mRNA) is combinatorial and unique to each cell type; in fact, a single miRNA molecule can bind and repress several different mRNAs and multiple miRNAs cooperate to control a single mRNA target, in a cell-customized manner [33]. Because of their pleiotropic gene expression regulation potential, miRNAs are also considered cellular micromanagers [2, 33]


Chronic Lymphocytic Leukemia miRNA Expression Acute Myelogenous Leukemia miRNA Expression Profile miRNA Expression Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Calin is supported by the CLL Global Research Foundation, and in part as a University of Texas System Regents Research Scholar and a Fellow of The University of Texas MD Anderson Research Trust. Dr. Jasra participated in the preparation of this chapter during her observership in Dr. Calin’s laboratory.


  1. 1.
    Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–676.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Revi. 2004;5:396–400.PubMedGoogle Scholar
  3. 3.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–366.PubMedCrossRefGoogle Scholar
  4. 4.
    Bourette RP, Rohrschneider LR. Early events in M-CSF receptor signaling. Growth Factors (Chur, Switzerland). 2000;17:155–166.CrossRefGoogle Scholar
  5. 5.
    Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–1966.PubMedCrossRefGoogle Scholar
  6. 6.
    Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–15529.PubMedCrossRefGoogle Scholar
  7. 7.
    Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, NY). 2004;303:83–86.CrossRefGoogle Scholar
  9. 9.
    Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–13949.PubMedCrossRefGoogle Scholar
  10. 10.
    Cui JW, Li YJ, Sarkar A, et al. Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood. 2007;110(7):2631–2640.PubMedCrossRefGoogle Scholar
  11. 11.
    Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIver A, Young BD. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia. 2007;21:912–916.PubMedGoogle Scholar
  12. 12.
    Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol. 2003;13:41–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Eklund EA. The role of HOX genes in malignant myeloid disease. Curr Opin Hematol. 2007;14:85–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–269.PubMedCrossRefGoogle Scholar
  15. 15.
    Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell. 2005;123:819–831.PubMedCrossRefGoogle Scholar
  16. 16.
    Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA. 2005;102:18081–18086.PubMedCrossRefGoogle Scholar
  17. 17.
    Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell. 2005;122:17–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol. 2007;9:775–787.PubMedCrossRefGoogle Scholar
  19. 19.
    Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA. 2006;103:5078–5083.PubMedCrossRefGoogle Scholar
  20. 20.
    Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–4157.PubMedCrossRefGoogle Scholar
  21. 21.
    Georgantas RW, 3rd, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA. 2007;104:2750–2755.PubMedCrossRefGoogle Scholar
  22. 22.
    Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14:121–141.PubMedGoogle Scholar
  23. 23.
    Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science (New York, NY). 2001;293:1146–1150.CrossRefGoogle Scholar
  24. 24.
    Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–9632.PubMedCrossRefGoogle Scholar
  25. 25.
    He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–833.PubMedCrossRefGoogle Scholar
  26. 26.
    Hiebert SW, Sun W, Davis JN, et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol. 1996;16:1349–1355.PubMedGoogle Scholar
  27. 27.
    Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore, PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science (New York, NY). 2001;293:834–838.CrossRefGoogle Scholar
  28. 28.
    Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–647.PubMedCrossRefGoogle Scholar
  29. 29.
    Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–689.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuchenbauer F, Feuring-Buske M, Buske C. AML1-ETO needs a partner: new insights into the pathogenesis of t(8;21) leukemia. Cell Cycle (Georgetown, Tex). 2005;4:1716–1718.CrossRefGoogle Scholar
  31. 31.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science (New York, NY). 2001;294:853–858.Google Scholar
  32. 32.
    Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science (New York, NY). 2001;294:858–862.Google Scholar
  33. 33.
    Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21:4663–4670.Google Scholar
  35. 35.
    Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–4060.PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–798.PubMedCrossRefGoogle Scholar
  37. 37.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science (New York, NY). 2004;303:95–98.CrossRefGoogle Scholar
  38. 38.
    Monticelli S, Ansel KM, Xiao C, et al. 2005. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 2004;6:R71.CrossRefGoogle Scholar
  39. 39.
    Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood. 2002;99:15–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakao M, Horiike S, Fukushima-Nakase Y, et al. Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Br J Haematol. 2004;125:709–719.PubMedCrossRefGoogle Scholar
  41. 41.
    Peterson LF, Zhang DE. The 8;21 translocation in leukemogenesis. Oncogene. 2004;23:4255–4262.PubMedCrossRefGoogle Scholar
  42. 42.
    Ramkissoon SH, Mainwaring LA, Ogasawara Y, et al. Hematopoietic-specific microRNA expression in human cells. Leuk Res. 2006;30:643–647.PubMedCrossRefGoogle Scholar
  43. 43.
    Rhoades KL, Hetherington CJ, Harakawa N, et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood. 2000;96:2108–2115.PubMedGoogle Scholar
  44. 44.
    Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Tibiletti MG, Bertoni F. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma. 2007;48:410–412.PubMedCrossRefGoogle Scholar
  45. 45.
    Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902–1910.PubMedCrossRefGoogle Scholar
  46. 46.
    Sontheimer EJ, Carthew RW. Molecular biology. Argonaute journeys into the heart of RISC. Science (New York, NY). 2004;305:1409–1410.CrossRefGoogle Scholar
  47. 47.
    Sontheimer EJ, Carthew RW. Silence from within: endogenous siRNAs and miRNAs. Cell. 2005;122:9–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, Humphries K, Sauvageau G. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood. 2002;99:121–129.PubMedCrossRefGoogle Scholar
  49. 49.
    Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–3016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Milena S. Nicoloso
    • 1
  • Bharti Jasra
    • 1
  • George A. Calin
    • 2
  1. 1.Department of Experimental Therapeutics and Department of Cancer GeneticsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Experimental Therapeutics and Department of Cancer GeneticsThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations