The Leukemia Stem Cell

  • Zeev Estrov
Part of the Cancer Treatment and Research book series (CTAR, volume 145)


In a meeting held in the Charité Hospital in Berlin in 1909, Alexander Maximow postulated that all circulating blood cells arise from a single lymphocyte-like cell [68]. An almost identical hypothesis was proposed by Artur Pappenheim in 1917 [78]. This hypothesis was tested years later by numerous investigators who demonstrated that all hematopoietic cells arise from a single hematopoietic stem cell (HSC) [54, 75, 90, 116]. Our knowledge of the leukemogenic process has benefited from hematopoiesis research. Identification and characterization of the HSC led to the theory that leukemia is a stem cell disease, i.e., that leukemia arises from a neoplastic HSC.


Acute Myeloid Leukemia Hematopoietic Stem Cell Minimal Residual Disease Leukemia Stem Cell Circulate Blood Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Dawn Chalaire for editing this manuscript.


  1. 1.
    Ailles LE, Humphries RK, Thomas TE, Hogge DE. Retroviral marking of acute myelogenous leukemia progenitors that initiate long-term culture and growth in immunodeficient mice. Exp Hematol. 1999;27:1609–1620.PubMedGoogle Scholar
  2. 2.
    Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–776.PubMedGoogle Scholar
  3. 3.
    Becker A, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse bone marrow cells. Nature. 1963;197:452–454.PubMedGoogle Scholar
  4. 4.
    Begley CG, Green AR. The SCL gene: from case report to critical hematopoietic regulator. Blood. 1999;93:2760–2770.PubMedGoogle Scholar
  5. 5.
    Bennett JH. On leucocythemia, or blood containing an unusual number of colourless corpuscles. Monthly J Med Sci. 1851a;12:17–38.Google Scholar
  6. 6.
    Bennett JH. On leucocythemia, or white cell blood. Monthly J Med Sci. 1851b;12:312–326.Google Scholar
  7. 7.
    Bennett JH. On leucocythemia, or white cell blood. Monthly J Med Sci. 1851c;13:97–111.Google Scholar
  8. 8.
    Bennett JH. On leucocythemia, or white cell blood. Monthly J Med Sci. 1851d;13:317–326.Google Scholar
  9. 9.
    Bennett JH. Case of hypertrophy of the spleen and liver, in which death took place from suppuration of the blood. Edinb Med Surg J. 1845;64:413–423.Google Scholar
  10. 10.
    Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103:620–625.PubMedGoogle Scholar
  11. 11.
    Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2001;2:172–180.PubMedGoogle Scholar
  12. 12.
    Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89:3104–3112.PubMedGoogle Scholar
  13. 13.
    Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol. 2000;28:660–671.PubMedGoogle Scholar
  14. 14.
    Bonnet D. Normal and leukaemic stem cells. Br J Haematol. 2005;130:469–479.PubMedGoogle Scholar
  15. 15.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–737.PubMedGoogle Scholar
  16. 16.
    Bornhauser M, Eger L, Oelschlaegel U, et al. Rapid reconstitution of dendritic cells after allogeneic transplantation of CD133+ selected hematopoietic stem cells. Leukemia. 2005;19:161–165.PubMedGoogle Scholar
  17. 17.
    Brendel C, Mohr B, Schimmelpfennig C, et al. Detection of cytogenetic aberrations both in CD90 (Thy-1)-positive and (Thy-1)-negative stem cell (CD34) subfractions of patients with acute and chronic myeloid leukemias. Leukemia. 1999;13:1770–1775.PubMedGoogle Scholar
  18. 18.
    Brown D, Kogan S, Lagasse E, et al. A PML/RAR alpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1997;94:2551–2556.PubMedGoogle Scholar
  19. 19.
    Camargo FD, Chambers SM, Drew E, McNagny KM, Goodell MA. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood. 2006;107:501–507.PubMedGoogle Scholar
  20. 20.
    Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 1991;66:85–94.PubMedGoogle Scholar
  21. 21.
    Chu S, Xu H, Shah NP, et al. Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood. 2005;105:2093–2098.PubMedGoogle Scholar
  22. 22.
    Clarkson B, Strife A, Fried J, et al. Studies of cellular proliferation in human leukemia. IV. Behavior of normal hemotopoietic cells in 3 adults with acute leukemia given continuous infusions of 3H-thymidine for 8 or 10 days. Cancer. 1970;26:1–19.PubMedGoogle Scholar
  23. 23.
    Cohnheim J. Ueber entzundung und eiterung. Path Anat Physiol Klin Med. 1867;40:1–79.Google Scholar
  24. 24.
    Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17:3029–3035.PubMedGoogle Scholar
  25. 25.
    Craigie D. Case of disease of spleen, in which death took place in consequence of the presence of purulent matter in the blood. Edinb Med Surg J. 1845;64:400–412.Google Scholar
  26. 26.
    de Guzman CG, Warren AJ, Zhang Z, et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol. 2002;22:5506–5517.PubMedGoogle Scholar
  27. 27.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–284.PubMedGoogle Scholar
  28. 28.
    Dick JE. Stem cells: self-renewal writ in blood. Nature. 2003;423:231–233.PubMedGoogle Scholar
  29. 29.
    Domen J, Weissman IL. Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol Med Today. 1999;5:201–208.PubMedGoogle Scholar
  30. 30.
    Donne A. De l’origine des globules du sang, de leur mode de formation, dee leur fin. C R Acad Sci. 1842;14:366.Google Scholar
  31. 31.
    Duncan AW, Rattis FM, DiMascio LN, et al. Integration of notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6:314–322.PubMedGoogle Scholar
  32. 32.
    Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–661.PubMedGoogle Scholar
  33. 33.
    Estrov Z, Grunberger T, Dube ID, Wang YP, Freedman MH. Detection of residual acute lymphoblastic leukemia cells in cultures of bone marrow obtained during remission. N Engl J Med. 1986;315:538–542.PubMedGoogle Scholar
  34. 34.
    Estrov Z, Kurzrock R, Talpaz M. Interruption of endogenous growth regulatory networks: a novel approach to inhibition of leukemia cell proliferation. FORUM Trends Exp Clin Med. 1993;3:306–318.Google Scholar
  35. 35.
    Faderl S, Talpaz M, Kantarjian HM, Estrov Z. Should polymerase chain reaction analysis to detect minimal residual disease in patients with chronic myelogenous leukemia be used in clinical decision making? Blood. 1999;93:2755–2759.PubMedGoogle Scholar
  36. 36.
    Feuring-Buske M, Hogge DE. Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood. 2001;97:3882–3889.PubMedGoogle Scholar
  37. 37.
    Fialkow PJ, Singer JW, Raskind WH, et al. Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med. 1987;317:468–473.PubMedGoogle Scholar
  38. 38.
    Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286:531–537.PubMedGoogle Scholar
  39. 39.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797–1806.PubMedGoogle Scholar
  40. 40.
    Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.PubMedGoogle Scholar
  41. 41.
    Grimwade D, Enver T. Acute promyelocytic leukemia: where does it stem from? Leukemia. 2004;18:375–384.PubMedGoogle Scholar
  42. 42.
    Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101:3142–3149.PubMedGoogle Scholar
  43. 43.
    Guan Y, Hogge DE. Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML). Leukemia. 2000;14:2135–2141.PubMedGoogle Scholar
  44. 44.
    Guenechea G, Gan OI, Dorrell C, Dick JE. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol. 2001;41:75–82.Google Scholar
  45. 45.
    Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–2307.PubMedGoogle Scholar
  46. 46.
    Hess DA, Meyerrose TE, Wirthlin L, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104:1648–1655.PubMedGoogle Scholar
  47. 47.
    Hochedlinger K, Jaenisch R. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med. 2003;349:275–286.PubMedGoogle Scholar
  48. 48.
    Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999;94:2056–2064.PubMedGoogle Scholar
  49. 49.
    Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–743.PubMedGoogle Scholar
  50. 50.
    Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002;298:601–604.PubMedGoogle Scholar
  51. 51.
    Jacobson LO, Marks EK, Gaston EO, Simmons EL, Robson MJ, Eldredge JH. Role of the spleen in radiation injury. Proc Exp Biol Med. 1949;70:7440.Google Scholar
  52. 52.
    Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA. 2003;100:10002–10007.PubMedGoogle Scholar
  53. 53.
    Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–667.PubMedGoogle Scholar
  54. 54.
    Jones RJ, Wagner JE, Calando P, Zicha MS, Sharkis SJ. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature. 1990;347:188–189.PubMedGoogle Scholar
  55. 55.
    Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–1784.PubMedGoogle Scholar
  56. 56.
    Kania G, Corbeil D, Fuchs J, et al. Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells. 2005;23:791–804.PubMedGoogle Scholar
  57. 57.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–1121.PubMedGoogle Scholar
  58. 58.
    Kondo M, Wagers AJ, Manz MG, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806.PubMedGoogle Scholar
  59. 59.
    Konopleva M, Zhao S, Hu W, et al. The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol. 2002;118:521–534.PubMedGoogle Scholar
  60. 60.
    Korbling M, Estrov Z. Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med. 2003;349:570–582.PubMedGoogle Scholar
  61. 61.
    Korn AP, Henkelman RM, Ottensmeyer FP, Till JE. Investigations of a stochastic model of haemopoiesis. Exp Hematol. 1973;1:362–375.PubMedGoogle Scholar
  62. 62.
    Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–648.PubMedGoogle Scholar
  63. 63.
    Lawrence HJ, Rozenfeld S, Cruz C, et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia. 1999;13:1993–1999PubMedGoogle Scholar
  64. 64.
    Lecuyer E, Hoang T. SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp Hematol. 2004;32:11–24.PubMedGoogle Scholar
  65. 65.
    Lessard J, Baban S, Sauvageau G. Stage-specific expression of polycomb group genes in human bone marrow cells. Blood. 1998;91:1216–1224.PubMedGoogle Scholar
  66. 66.
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255260.PubMedGoogle Scholar
  67. 67.
    Licht JD. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene. 2001;20:5660–5679.PubMedGoogle Scholar
  68. 68.
    Maximow A. Der lymphozyte als gemeinsame stammzelle der verschiedenen blutelemente in der embryonalen entwicklung und im poetfetalen leben der säugetiere. Demonstrationsvortrag, gehalten in der asserordentlichen sitzung der Berliner Hämatologoschen Gesellschaft am 1, Juni 1909.Google Scholar
  69. 69.
    McCulloch EA, Howatson AF, Buick RN, Minden MD, Izaguirre CA. Acute myeloblastic leukemia considered as a clonal hemopathy. Blood Cells. 1979;5:261–282.PubMedGoogle Scholar
  70. 70.
    Minden MD, Buick RN, McCulloch EA. Separation of blast cell and T-lymphocyte progenitors in the blood of patients with acute myeloblastic leukemia. Blood. 1979;54:186–195.PubMedGoogle Scholar
  71. 71.
    Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–1885.PubMedGoogle Scholar
  72. 72.
    Moore MA. Converging pathways in leukemogenesis and stem cell self-renewal. Exp Hematol. 2005;33:719–737.PubMedGoogle Scholar
  73. 73.
    Moore MA, Metcalf D. Cytogenetic analysis of human acute and chronic myeloid leukemic cells cloned in agar culture. Int J Cancer. 1973;11:143–152.PubMedGoogle Scholar
  74. 74.
    Moore MA, Shapiro F. Regulation and function of hematopoietic stem cells. Curr Opin Hematol. 1994;3:180–186.Google Scholar
  75. 75.
    Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995;11:35–71.PubMedGoogle Scholar
  76. 76.
    Muller-Sieburg CE, Townsend K, Weissman IL, Rennick D. Proliferation and differentiation of highly enriched mouse hematopoietic stem cells and progenitor cells in response to defined growth factors. J Exp Med. 1988;167:1825–1840.PubMedGoogle Scholar
  77. 77.
    Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood. 2002;99:15–23.PubMedGoogle Scholar
  78. 78.
    Pappenheim A. Prinzipen der neuren morphologichschen haematozytologie nach zytogenetischer grundlage. Folia Haematol. 1917;21:91–101.Google Scholar
  79. 79.
    Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–305.PubMedGoogle Scholar
  80. 80.
    Phillips RL, Ernst RE, Brunk B, et al. The genetic program of hematopoietic stem cells. Science. 2000;288:1635–1640.PubMedGoogle Scholar
  81. 81.
    Pui JC, Allman D, Xu L, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity. 1999;11:299–308.PubMedGoogle Scholar
  82. 82.
    Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298:597–600.PubMedGoogle Scholar
  83. 83.
    Ravandi F, Estrov Z. Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin Cancer Res. 2006;12:340–344.PubMedGoogle Scholar
  84. 84.
    Ravandi F, Talpaz M, Kantarjian H, Estrov Z. Cellular signaling pathways: new targets in leukemia therapy. Br J Haematol. 2002;116:57–77.PubMedGoogle Scholar
  85. 85.
    Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–414.PubMedGoogle Scholar
  86. 86.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111.PubMedGoogle Scholar
  87. 87.
    Robey RW, Zhan Z, Piekarz RL, Kayastha GL, Fojo T, Bates SE. Increased MDR1 expression in normal and malignant peripheral blood mononuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clin Cancer Res. 2006;5:547–555.Google Scholar
  88. 88.
    Sauvageau G, Thorsteinsdottir U, Eaves CJ, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 1995;9:1753–1765.PubMedGoogle Scholar
  89. 89.
    Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99(2):507–512.PubMedGoogle Scholar
  90. 90.
    Sharkis SJ, Collector MI, Barber JP, Vala MS, Jones RJ. Phenotypic and functional characterization of the hematopoietic stem cell. Stem Cells. 1997;(suppl. 1):41–44.Google Scholar
  91. 91.
    Smith LJ, Curtis JE, Messner HA, Senn JS, Furthmayr H, McCulloch EA. Lineage infidelity in acute leukemia. Blood. 1983;61:1138–1145.PubMedGoogle Scholar
  92. 92.
    So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell. 2003;3:161–171.PubMedGoogle Scholar
  93. 93.
    Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241:58–62.PubMedGoogle Scholar
  94. 94.
    Staal FJ, Clevers HC. WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol. 2005;5:21–30.PubMedGoogle Scholar
  95. 95.
    Stein MI, Zhu J, Emerson SG. Molecular pathways regulating the self-renewal of hematopoietic stem cells. Exp Hematol. 2004;32:1129–1136.PubMedGoogle Scholar
  96. 96.
    Storms RW, Goodell MA, Fisher A, Mulligan RC, Smith C. Hoechst dye efflux reveals a novel CD7(+)CD34(−) lymphoid progenitor in human umbilical cord blood. Blood. 2000;96:2125–2133.PubMedGoogle Scholar
  97. 97.
    Storms RW, Trujillo AP, Springer JB, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA. 1999;96:9118–9123.PubMedGoogle Scholar
  98. 98.
    Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA. 1990;87:3584–3588.PubMedGoogle Scholar
  99. 99.
    Taipale J, Beachy PA. The hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411:349–354.PubMedGoogle Scholar
  100. 100.
    Talpaz M, Estrov Z, Kantarjian H, Ku S, Foteh A, Kurzrock R. Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J Clin Invest. 1994;94:1383–1389.PubMedGoogle Scholar
  101. 101.
    Taussig DC, Pearce DJ, Simpson C, et al. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–4092.PubMedGoogle Scholar
  102. 102.
    Terpstra W, Ploemacher RE, Prins A, et al. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood. 1997;88:1944–1950.Google Scholar
  103. 103.
    Terpstra W, Prins A, Ploemacher RE, et al. Long-term leukemia-initiating capacity of a CD34-subpopulation of acute myeloid leukemia. Blood. 1996;87:2187–2194.PubMedGoogle Scholar
  104. 104.
    Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–222.PubMedGoogle Scholar
  105. 105.
    Till JE, McCulloch EA, Siminovitch LA. Stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA. 1964;51:29–36.PubMedGoogle Scholar
  106. 106.
    van der Lugt NM, Alkema M, Berns A, Deschamps J. The polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech Dev. 1996;58:153–164.PubMedGoogle Scholar
  107. 107.
    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–2302.PubMedGoogle Scholar
  108. 108.
    Velpeau A. Sur la resorption du pusuaet sur l’alternation du sang dans les maladies clinique de persection nenemant. Premier observation. Revue Medical Francaise et Étrangère. Rev Med. 1827;2:216–240.Google Scholar
  109. 109.
    Virchow R. Editorial. Physiol Klin Med. 1855;3:23.Google Scholar
  110. 110.
    Virchow R. Weisses Blut und Milztumoren. Medicinische Zeitung. 1847a;16:9–15.Google Scholar
  111. 111.
    Virchow R. Weisses Blut (leukämie). Virchow Arch Pathol Anat. 1847b;1:563–569.Google Scholar
  112. 112.
    Virchow R. Weisses Blut und Milztumoren. Medicinische Zeitung. 1846;15:157–163.Google Scholar
  113. 113.
    Virchow R. Weisses Blut. In: Froriep LFv, Froriep R, eds. Neue Notizen aus dem Gebiete der Natur- und Heilkunde. Vol. 36. Berlin; 1845:151–156.Google Scholar
  114. 114.
    Wantzin GL. Nuclear labelling of leukaemic blast cells with tritiated thymidine triphosphate in 35 patients with acute leukaemia. Br J Haematol. 1977;37:475–482.PubMedGoogle Scholar
  115. 115.
    Warner JK, Wang JC, Hope KJ, Jin L, Dick JE. Concepts of human leukemic development. Oncogene. 2004;23:7164–7177.PubMedGoogle Scholar
  116. 116.
    Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:1442–1446.PubMedGoogle Scholar
  117. 117.
    Wilpshaar J, Bhatia M, Kanhai HH, et al. Engraftment potential of human fetal hematopoietic cells in NOD/SCID mice is not restricted to mitotically quiescent cells. Blood. 2002;100:20–27.Google Scholar
  118. 118.
    Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–482.Google Scholar
  119. 119.
    Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;5:436–442.Google Scholar
  120. 120.
    Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M. Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol. 1998;26:1022–1023.Google Scholar
  121. 121.
    Zanjani ED, Almeida-Porada G, Livingston AG, Zeng H, Ogawa M. Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp Hematol. 2003;31(5):406–412.PubMedGoogle Scholar
  122. 122.
    Zhang J, Grindley JC, Yin T, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441(7092):518–522.Google Scholar
  123. 123.
    Zhu J, Emerson SG. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene. 2002;21:3295–3313.PubMedGoogle Scholar
  124. 124.
    Zhu J, Giannola DM, Zhang Y, Rivera AJ, Emerson SG. NF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4. Blood. 2003;102:2420–2427.PubMedGoogle Scholar
  125. 125.
    Zipori D. The nature of stem cells: state rather than entity. Nat Rev Genet. 2004;5:873–878.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.The Department of LeukemiaThe University of Texas MD, Anderson Cancer CenterHoustonUSA

Personalised recommendations