Skip to main content

Utility of Animal Models in Pancreatic Cancer Research

  • Chapter

Part of the book series: M. D. Anderson Solid Tumor Oncology Series ((MDA))

The vast majority of human pancreatic cancers (∼95%) are classified as ductal adenocarcinomas (1, 2), whereas acinar cell carcinomas and other histologic types are much less common. The cell origin of ductal adenocarcinomas is still under debate (3). Some studies have suggested that it arises from metaplasia (transdifferentiation) of acinar cells or even endocrine (islet) cells to ductal cells leading to ductal adenocarcinoma (3, 4) Although this has been based on cell lines and animal models, observations on human carcinomas, however, imply a different scenario. Hyperplastic and dysplastic epithelial lesions of the pancreatic ducts have been identified frequently in association with ductal adenocarcinomas (5), and these are now referred to as pancreatic intraepithelial neoplasia (PanINs) (6, 7). The evidence thus suggests that ductal adenocarcinomas may simply be originating from ductal cells, although it cannot be ruled out that ductal metaplasia of other cell types, especially acinar cells or centro-acinar cells (trans-differentiation or formation of ductular structures) could also be involved in the development of ductal adenocarcinoma under different situations, including genetic or epigenetic processes. Moreover, recent studies by Guerra et al. provided strong evidence for a role for pancreatic tissue damage and pancreatitis in the etiology of pancreatic ductal adenocarcinoma (PDAC) (9).

It is certain that the etiology of PDACs is fairly complex and poorly understood. This chapter provides an overview of the histologic and molecular complexities of pancreatic neoplasia as they apply to and correlate with different animal models, with a focus on transgenic mice and mice bearing human pancreatic tumor cells as xenografts, and their potential utility for developing preventive and/or therapeutic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hezel AF, Kimmelman AC, Stanger BZ, et al. 2006, Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249.

    Article  CAS  PubMed  Google Scholar 

  2. Tuveson DA, Hingorani SR. 2005, Ductal pancreatic cancer in humans and mice. Cold Spring Harbor Symp Quant Biol 70:65–72.

    Article  CAS  PubMed  Google Scholar 

  3. Pour PM, Standop J, Batra SK. 2002, Are islet cells the gatekeepers of the pancreas? Pancreatology 2:440–448.

    Article  PubMed  Google Scholar 

  4. Schmid RM. 2002, Acinar-to-ductal metaplasia in pancreatic cancer development. J Clin Invest 109:1403–1404.

    CAS  PubMed  Google Scholar 

  5. Andea A, Sarkar F, Adsay VN. 2003, Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol 16:996–1006.

    Article  PubMed  Google Scholar 

  6. Hruban RH, Adsay NV, Albores-Saavedra J, et al. 2001, Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586.

    Article  CAS  PubMed  Google Scholar 

  7. Hruban RH, Adsay NV, Albores-Saavedra J, et al. 2006a, Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106.

    Article  CAS  PubMed  Google Scholar 

  8. Hruban RH, Rustgi AK, Brentnall TA, et al. 2006b, Pancreatic cancer in mice and man: the Penn Workshop 2004. Cancer Res 2006b, 66:14–17.

    Article  CAS  Google Scholar 

  9. Guerra C, Schuhmacher AJ, Canamero M, et al. 2007, Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302.

    Article  CAS  PubMed  Google Scholar 

  10. Park HW, Chae YM, Shin TS. 1992, Morphogenic development of the pancreas in the staged human embryo. Yonsei Med J 33:104–108.

    CAS  PubMed  Google Scholar 

  11. Kawakami Y, Raya A, Raya RM, et al. 2005, Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somatogenesis in the zebrafish embryo. Nature 435: 165–171.

    Article  CAS  PubMed  Google Scholar 

  12. Leach SD. 2995, Epithelial differentiation in pancreatic development and neoplasia: new niches for nestin and Notch. J Clin Gastroenterol 39:S78–82.

    Article  Google Scholar 

  13. Miyamoto Y, Maitra A, Ghosh B, et al. 2003, Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3:565–576.

    Article  CAS  PubMed  Google Scholar 

  14. Murtaugh LC, Stanger BZ, Kwan KM, et al. 2003, Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A 100:14920 –14925.

    Article  CAS  PubMed  Google Scholar 

  15. Means AL, Meszoely IM, Suzuki K, et al. 2005, Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development (Cambridge, England) 132:3767–3776.

    CAS  Google Scholar 

  16. Hingorani SR, Petricoin EF, Maitra A, et al. 2003, Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450.

    Article  CAS  PubMed  Google Scholar 

  17. Tuveson DA, Shaw AT, Willis NA, et al. 2004, Endogenous oncogenic K-ras (G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5: 375–387.

    Article  CAS  PubMed  Google Scholar 

  18. Leach SD. 2004, Mouse models of pancreatic cancer: the fur is finally flying! Cancer Cell 5:7–11.

    Article  CAS  PubMed  Google Scholar 

  19. Pasca di Magliano M, Sekine S, Ermilov A, et al. 2006, Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev 20:3161–3173.

    Article  CAS  PubMed  Google Scholar 

  20. Kim SK, Hebrok M, Melton DA. 1997, Notochord to endoderm signaling is required for pancreas development. Development (Cambridge, England) 124:4243–4252.

    CAS  Google Scholar 

  21. Scharfmann R. 2000, Control of early development of the pancreas in rodents and humans: implications of signals from the mesenchyme. Diabetologia 43: 1083–1092.

    Article  CAS  PubMed  Google Scholar 

  22. Hahn SA, Schutte M, Hoque AT, et al. 1996, DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353.

    Article  CAS  PubMed  Google Scholar 

  23. Hoglund M, Gorunova L, Jonson T, et al. 1998, Cytogenetic and FISH analyses of pancre-atic carcinoma reveal breaks in 18q11 with consistent loss of 18q12-qter and frequent gain of 18p. Br J Cancer 77:1893–1899.

    CAS  PubMed  Google Scholar 

  24. Dammann R, Schagdarsurengin U, Liu L, et al. 2003, Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene 22:3806–3812.

    Article  CAS  PubMed  Google Scholar 

  25. Dugan MC, Dergham ST, Kucway R, et al. 1997, HER-2/neu expression in pancreatic adenocarcinoma: relation to tumor differentiation and survival. Pancreas 14:229–236.

    Article  CAS  PubMed  Google Scholar 

  26. Day JD, Diguiseppe JA, Yeo C. 1996, Immunohistochemical evaluation of Her-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia. Human Pathol 27: 119–124.

    Article  CAS  Google Scholar 

  27. Kirsch DG, Kastan MB. 1998, Tumor suppressor p53: implication for tumor development and prognosis. J Clin Oncol 16:3158–3168.

    CAS  PubMed  Google Scholar 

  28. Dergham ST, Dugan MC, Joshi US, et al. 1997a, The clinical significance of p21(WAF1/CIP-1) and p53 expression in pancreatic adenocarcinoma. Cancer 80:372–381.

    Article  CAS  PubMed  Google Scholar 

  29. Jonson T. Gorunova L, Dawiskiba S, et al. 1999, Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer 24:62–71.

    Article  CAS  PubMed  Google Scholar 

  30. Takaku K, Oshima M, Miyoshi H, et al. 1998, Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656.

    Article  CAS  PubMed  Google Scholar 

  31. Caldas C, Hahn SA, Da Costa LT, et al. 1994, Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32.

    Article  CAS  PubMed  Google Scholar 

  32. Schutte M, Hruban RH, Geradts J, et al. 1997, Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57: 3126–3130.

    CAS  PubMed  Google Scholar 

  33. Ueki T, Toyota M, Sohn T, et al. 2000, Hypermethylation of multiple genes in pancreatic ade-nocarcinoma. Cancer Res 60:1835–1839.

    CAS  PubMed  Google Scholar 

  34. Gerdes B, Ramaswamy A, Ziegler A, et al. 2002, P16INK4a is a prognostic marker in resected ductal pancreatic cancer: An Analysis of p16I NK4a, p53, MDM2, an Rb. Ann Surg 235:51–59.

    Article  PubMed  Google Scholar 

  35. Bardeesy N, Aguirre AJ, Chu GC, et al. 2006, Both p16. Ink4a and the p19 Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse Proc Natl Acad Sci U S A 103:5947–5952.

    Article  CAS  PubMed  Google Scholar 

  36. Bardeesy N, Cheng KH, Berger JH, et al. 2006, Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20:3130–3146.

    Article  CAS  PubMed  Google Scholar 

  37. Slack JM. 1995, Developmental biology of the pancreas. Development 121:1569–1580.

    CAS  PubMed  Google Scholar 

  38. Almoguera C, Shibata D, Forrester K, et al. 1988, Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554.

    Article  CAS  PubMed  Google Scholar 

  39. Berrozpe G, Schaeffer J, Peinado MA, et al. 1994, Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. I nt J Cancer 58:185–191.

    Article  CAS  Google Scholar 

  40. Lilja HS, Hyde E, Longnecker DS, et al. 1977, DNA damage and repair in rat tissues follow-ing administration of azaserine. Cancer Res 37:3925–3931.

    CAS  PubMed  Google Scholar 

  41. Pour P, Mohr U, Cardesa A, et al. 1975, Pancreatic neoplasms in an animal model: morphological, biological, and comparative studies. Cancer 36:379–389.

    Article  CAS  PubMed  Google Scholar 

  42. Cerny WL, Mangold KA, Scarpelli DG. 1992, K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res 52:4507–4513.

    CAS  PubMed  Google Scholar 

  43. Fujii H, Egami H, Chaney W, et al. 1990, Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon 12. Mol Carcinogen 3:296–301.

    Article  CAS  Google Scholar 

  44. Sugio K, Gazdar AF, Albores-Saavedra J, et al. 1996, High yields of K-ras mutations in intra-ductal papillary mucinous tumors and invasive adenocarcinomas induced by N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine in the pancreas of female Syrian hamsters. Carcinogenesis 17:303–309.

    Article  CAS  PubMed  Google Scholar 

  45. van Kranen HJ, Vermeulen E, Schoren L, et al. 1991, Activation of c-K-ras is frequent in pan-creatic carcinomas of Syrian hamsters, but is absent in pancreatic tumors of rats. Carcinogenesis 12:1477–1482.

    Article  PubMed  Google Scholar 

  46. Clapper ML, Wood M, Leahy K, et al. 1995, Chemopreventive activity of Oltipraz against N-nitrosobis(2-oxopropyl)amine (BOP)-induced ductal pancreatic carcinoma development and effects on survival of Syrian golden hamsters. Carcinogenesis 16:2159–2165.

    Article  CAS  PubMed  Google Scholar 

  47. Zalatnai A, Schally AV. 1990, Hepatic lesions in Syrian golden hamsters with pancreatic carcinoma induced by N-nitrosobis(2-oxopropyl)amine (BOP). Acta Morphologica Hungarica 38:119–130.

    CAS  PubMed  Google Scholar 

  48. Siveke JT, Schmid RM. 2005, Chromosomal instability in mouse metastatic pancreatic cancer —it’s K-ras and Tp53 after all. Cancer Cell 7: 405–407.

    Article  CAS  PubMed  Google Scholar 

  49. Rivera JA, Graeme-Cook F, Werner J, et al. 1997, A rat model of pancreatic ductal adenocar-cinoma: targeting chemical carcinogens. Surgery 122:82–90.

    Article  CAS  PubMed  Google Scholar 

  50. Fogh J, Orfeo T, Tiso J, et al. 1980, Twenty three new human tumor cell lines established in nude mice. Exp Cell Biol 48:229–239.

    CAS  PubMed  Google Scholar 

  51. Sordat BC, Ueyama Y, Fogh J, et al. 1982, Metastasis of tumor xenografts in the nude mouse. In: Fogh J, Giovanella BC (eds.) The nude mouse in experimental and clinical research. vol 2, Academic Press, New York, 95–143.

    Google Scholar 

  52. Reyes G, Villanueva S, Garcia C, et al. 1996, Orthotopic xenografts of human pancreatic carcinomas aquire genetic abbrations during dissemination of nude mice. Cancer Res 56: 5713–5719.

    CAS  PubMed  Google Scholar 

  53. Mohammad RM, Al-Katib A, Pettit GR, et al. 1998a, An orthotopic model of human pancreatic cancer in severe combined immunodeficient mice: potential application for preclinical studies. Clin Cancer Res 4:887–894.

    CAS  PubMed  Google Scholar 

  54. Mohammad RM, Dugan MC, Mohamed AN, et al. 1998b, Establishment of a human pancreatic tumor xenograft model: potential application for preclinical evaluation of novel therapeutic agents. Pancreas 16:19–25.

    Article  CAS  PubMed  Google Scholar 

  55. Hanahan D, Weinberg RA. 200, The hallmarks of cancer. Cell 100:57–70.

    Article  Google Scholar 

  56. Mohammad RM, Li Y, Mohamed AN, et al. 1999, Clonal preservation of human pancreatic cell line derived from primary pancreatic adenocarcinoma. Pancreas 19:353–361.

    Article  CAS  PubMed  Google Scholar 

  57. Shono M, Sato N, Mizumoto K, et al. 2001, Stepwise progression of centrosome defects associated with local tumor growth and metastatic process of human pancreatic carcinoma cells transplanted orthotopically into nude mice. Lab Invest J Tech Meth Pathol 81: 945–952.

    CAS  Google Scholar 

  58. Tuveson DA, Jacks T. 2002, Technologically advanced cancer modeling in mice. Curr Opin Genet Dev 12:105–110.

    Article  CAS  PubMed  Google Scholar 

  59. Kuhn R, Schwenk F, Aguet M, et al. 1995, I nducible gene targeting in mice. Science 269:1427–1429.

    Article  CAS  PubMed  Google Scholar 

  60. Chin L, Tam A, Pomerantz J, et al. 1999, Essential role of oncogenic ras in tumor maintenance. Nature 400:468–472.

    Article  CAS  PubMed  Google Scholar 

  61. Fisher GH, Wellen SL, Klimstra D, et al. 2001, I nduction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15:3249–3262.

    Article  CAS  PubMed  Google Scholar 

  62. Felsher DW, Bishop JM. 1999, Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207.

    Article  CAS  PubMed  Google Scholar 

  63. Moody SE, Sarkisian CJ, Hahn KT. 2002, Conditional activation of Neu in mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2:451–461.

    Article  CAS  PubMed  Google Scholar 

  64. Kokkinakis DM, Scarpelli DG, Rao MS, 1983, Metabolism of pancreatic carcinogens N-nitroso-2,6-dimethylmorpholine and N-nitrosobis(2-oxopropyl)amine by microsomes and cytosol of hamster pancreas and liver. Cancer Res 43:5761–5767.

    CAS  PubMed  Google Scholar 

  65. Kokkinakis DM, Wieboldt R, Hollenberg PF, et al. 1987, Structural relationships of pancreatic nitrosamine carcinogens. Carcinogenesis 8:81–90.

    Article  CAS  PubMed  Google Scholar 

  66. Clarke AR, Maandag ER, van Roon M, et al. 1992, Requirement for a functional Rb-1 gene in murine development. Nature 359:328–330.

    Article  CAS  PubMed  Google Scholar 

  67. Cristofano A, Di Pesce B, Cordon-Cardo C, et al. 1998, Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355.

    Article  PubMed  Google Scholar 

  68. Orban PC, Chui D, Marth JD. 1992, Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865.

    Article  CAS  PubMed  Google Scholar 

  69. Indra AK, Warot X, Brocard J, et al. 1999, Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27:4324–4327.

    Article  CAS  PubMed  Google Scholar 

  70. Olive KP, Tuveson DA. 2006, The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 12:5277–5287.

    Article  CAS  PubMed  Google Scholar 

  71. Maitra A, Kern SE, Hruban RH. 2006, Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 20:211–226.

    Article  CAS  PubMed  Google Scholar 

  72. Briscoe J. 2006, Agonizing hedgehog. Nat Chem Biol 2:10–11.

    Article  CAS  PubMed  Google Scholar 

  73. Riobo NA, Saucy B, Dilizio C, et al. 2006, Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci U S A 103:12607–12612.

    Article  CAS  PubMed  Google Scholar 

  74. Sinha S, Chen JK. 2006, Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nature Chem Biol 2:29–30.

    Article  CAS  Google Scholar 

  75. Weitzman JB. 2002, Agonizing hedgehog. 1:7.

    Google Scholar 

  76. Dergham ST, Dugan MC, Kucway R, 1997b, Prevalence and clinical significance of combined K-ras mutation and p53 aberration in pancreatic adenocarcinoma. Int J Pancreatol 21: 127–143.

    Article  CAS  PubMed  Google Scholar 

  77. Luttges J, Schlehe B, Menke MA, et al. 1999, The K-ras mutation pattern in pancreatic ductal adenocarcinoma usually is identical to that in associated normal, hyperplastic, and metaplastic ductal epithelium. Cancer 85:1703–1710.

    Article  CAS  PubMed  Google Scholar 

  78. Attri J, Srinivasan R, Majumdar S, et al. 2005, Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma. BMC Gastroenterol 5:22.

    Article  PubMed  Google Scholar 

  79. Huang L, Goodrow TL, Zhang SY, et al. 1996, Deletion and mutation analyses of the P16/MTS-1 tumor suppressor gene in human ductal pancreatic cancer reveals a higher frequency of abnormali-ties in tumor-derived cell lines than in primary ductal adenocarcinomas. Cancer Res 56: 1137–1141.

    CAS  PubMed  Google Scholar 

  80. Li Y, Bhuiyan M, Vaitkevicius VK, et al. 1998, Molecular analysis of the p53 gene in pancre-atic adenocarcinoma. Diagn Mol Pathol 7:4–9.

    Article  CAS  PubMed  Google Scholar 

  81. Brentnall TA, Bronner MP, Byrd DR, et al. 1999, Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Int Med 131:247–255.

    CAS  PubMed  Google Scholar 

  82. Pogue-Geile KL, Chen R, Bronner MP, et al. 2006, Palladin mutation causes familial pancre-atic cancer and suggests a new cancer mechanism. PLoS Med 3:e516.

    Article  PubMed  Google Scholar 

  83. Yamano M, Fujii H, Takagaki T, et al. 2000, Genetic progression and divergence in pancreatic carcinoma. Am J Pathol 156:2123–2133.

    CAS  PubMed  Google Scholar 

  84. Ruggeri BA, Huang L, Berger D, et al. 1997, Molecular pathology of primary and metastatic ductal pancreatic lesions: analyses of mutations and expression of the p53, mdm-2, and p21/ WAF-1 genes in sporadic and familial lesions. Cancer 79:700–716.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Azmi, A.S., Mohammad, M., Kaseb, A.O., Sarkar, F.H., Mohammad, R.M. (2008). Utility of Animal Models in Pancreatic Cancer Research. In: Lowy, A.M., Leach, S.D., Philip, P.A. (eds) Pancreatic Cancer. M. D. Anderson Solid Tumor Oncology Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69252-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69252-4_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-69250-0

  • Online ISBN: 978-0-387-69252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics