Skip to main content

Region-Based Theory of Space: Algebras of Regions, Representation Theory, and Logics

  • Chapter
Mathematical Problems from Applied Logic II

Part of the book series: International Mathematical Series ((IMAT,volume 5))

Abstract

In this paper, we present recent results in the region-based theory of space that concern algebras of regions, the corresponding topological and discrete models, and representation theory. We also discuss applications to Qualitative Spatial Reasoning (QSR), an actively developing branch of AI and Knowledge Representation (KR). In particular, we show how new results in some practically motivated areas of QSR and KR can be obtained by combining methods from such established classical disciplines as Boolean algebras, topology and logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ph. Balbiani (Ed.), Special Issue on Spatial Reasoning, J. Appl. Non-Classical Logics 12 (2002), No. 3–4.

    Google Scholar 

  2. Ph. Balbiani, T. Tinchev, and D. Vakarelov, Dynamic logic of region-based theory of discrete spaces, J. Appl. Non-Classical Logics (2006). [To appear]

    Google Scholar 

  3. Ph. Balbiani, G. Dimov, T. Tinchev and D. Vakarelov, Modal logics for region-based theory of space, 2006. [Submitted]

    Google Scholar 

  4. B. Bennett, A categorical axiomatization of region-based geometry, Fundam. Inform. 46, (2001), 145–158.

    MATH  Google Scholar 

  5. L. Biacino and G. Gerla, Connection structures, Notre Dame J. Formal Logic 32 (1991), 242–247.

    Article  MATH  Google Scholar 

  6. L. Biacino and G. Gerla, Connection structures: Grzegorczyk’s and Whitehead’s definition of point, Notre Dame J. Formal Logic 37 (1996), 431–439.

    Article  MATH  Google Scholar 

  7. P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic, Cambridge Univ. Press, 2001.

    Google Scholar 

  8. A. Chagrov and M. Zakharyaschev. Modal Logic, Oxford Univ. Press, 1997.

    Google Scholar 

  9. E. Čech, Topological Spaces, Interscience, 1966.

    Google Scholar 

  10. B. L. Clarke, A calculus of individuals based on’ connection, Notre Dame J. Formal Logic 22 (1981), 204–218.

    Article  MATH  Google Scholar 

  11. B. L. Clarke, Individuals and points, Notre Dame J. Formal Logic 26 (1985), 61–75.

    Article  MATH  Google Scholar 

  12. A. Cohn and S. Hazarika, Qualitative spatial representation and reasoning: An overview, Fundam. Inform. 46 (2001), 1–29.

    MATH  Google Scholar 

  13. T. de Laguna, Point, line and surface as sets of solids, J. Philos. 19 (1922), 449–461.

    Article  Google Scholar 

  14. G. Dimov and D. Vakarelov, Topological representation of precontact algebras, In: ReLMiCS’2005, St. Catharines, Canada, February 22–26, 2005, Proceedings, W. MacCaul, M. Winter, and I. Düntsch (Eds.), Lect. Notes Commp. Sci. 3929 Springer, 2006, pp. 1–16.

    Google Scholar 

  15. G. Dimov and D. Vakarelov, Contact algebras and region-based theory of space. A proximity approach. I, Fundam. Inform. (2006). [To appear]

    Google Scholar 

  16. G. Dimov and D. Vakarelov, Contact algebras and region-based theory of space. A proximity approach. II, Fundam. Inform. (2006). [To appear]

    Google Scholar 

  17. I. Düntsch (Ed.), Special issue on Qualitative Spatial Reasoning, Fundam. Inform. 46 (2001).

    Google Scholar 

  18. I. Düntsch, W. MacCaul, D. Vakarelov, and M. Winter, Topological Representation of Contact Lattices, Lect. Notes Comput. Sci., Springer, 2006. [To appear]

    Google Scholar 

  19. I. Düntsch and D. Vakarelov, Region-based theory of discrete spaces: A proximity approach, In: Proceedings of Fourth International Conference Journées de l’informatique Messine, Metz, France, 2003, Nadif, M., Napoli, A., SanJuan, E., and Sigayret, A. (Eds.), pp. 123–129

    Google Scholar 

  20. I. Düntsch, H. Wang, and S. McCloskey, A relational algebraic approach to Region Connection Calculus, Theor. Comput. Sci. 255, (2001), 63–83.

    Article  MATH  Google Scholar 

  21. I. Düntsch and M. Winter, A Representation theorem for Boolean Contact Algebras, Theor. Comput. Sci. (B) 347 (2005), 498–512.

    Article  MATH  Google Scholar 

  22. I. Düntsch and M. Winter, Weak Contact Structures, Lect. Notes Comput. Sci. 3929, Springer, 2006. [To appear].

    Google Scholar 

  23. M. Egenhofer, R. Franzosa, Point-set topological spatial relations, Int. J. Geogr. Inform. Systems 5 (1991), 161–174.

    Article  Google Scholar 

  24. R. Engelking, General Topology, PWN, Warszawa, 1977.

    MATH  Google Scholar 

  25. V. Efremovič, Infinitesimal spaces, Dokl. Akad. Nauk SSSR 76 (1951), 341–343.

    Google Scholar 

  26. V. V. Fedorčuk, Boolean δ-algebras and quasi-open mappings, Siberian Math. J. 14 (1973) 759–767.

    Article  Google Scholar 

  27. D. Gabbay, An irreflexivity lemma with applications to axiomatizations of conditions in tense frames, In: Aspects of Philosophical Logic, U. Moenich (Ed.), Reidel-Dordrecht, 1981, pp. 67–89.

    Google Scholar 

  28. D. Gabelaia, R. Konchakov, A. Kurucz, F. Wolter and M. Zakharyaschev, Combining spatial and temporal logics: expressiveness versus complexity, J. Artif. Intell. Res. 23 (2005), 167–243.

    MATH  Google Scholar 

  29. A. Galton, The mereotopology of discete spaces, In: Spatial Information Theory, Proceedings of the International Conference COSIT’99, C. Freksa-D. M. Mark (Eds.), Lect. Notes Comput. Sci. 1661, Springer-Verlag, 1999, pp. 251–266.

    Google Scholar 

  30. A. Galton, Qualitative Spatial Change Oxford Univ. Press, 2000.

    Google Scholar 

  31. G. Gerla, Pointless geometries, In: Handbook of Incidence Geometry, F. Buekenhout (Ed.), Elsevier, 1995, pp. 1015–1031.

    Google Scholar 

  32. A. Grzegorczyk, Undecidability of some topological theories, Fundam. Math. 38 (1951), 137–152.

    Google Scholar 

  33. A. Grzegorczyk, The system of Leśnewski in relation to contemporary logical research, Stud. Log. 3 (1955), 77–95.

    Article  Google Scholar 

  34. A. Grzegorczyk, Axiomatization of geometry without points, Synthese textbf12 (1960), 228–235.

    Google Scholar 

  35. S. T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 28, (1949), 287–320.

    MATH  Google Scholar 

  36. R. Konchakov, A. Kurucz, F. Wolter and M. Zakharyaschev, Spatial Logic + Temporal Logic = ? In: Logic of Space, M. Aiello, I. Pratt, and J. van Benthem (Eds.), 2006. [To appear]

    Google Scholar 

  37. S. Leader, Local proximity spaces, Math. Ann. 169 (1967), 275–281.

    Article  MATH  Google Scholar 

  38. S. Leśnewski, 1927–1931. Collected works, S. J. Surma, J. T. J. Srzednicki, and D. I. Barmett (Eds.), PWN-Kluwer, Vols 1 and 2, 1992.

    Google Scholar 

  39. S. Li and M. Ying, Generalized Region Connection Calculus, Artif. Intell. 160 (2004), no. 1–2, 1–34.

    Article  MATH  Google Scholar 

  40. C. Lutz and F. Wolter, Modal logics for topological relations, Logical Meth. Computer Sci. (2006). [To appear]

    Google Scholar 

  41. T. Mormann, Continuous lattices and Whiteheadian theory of space, Log. Log. Philos. 6 (1998), 35–54.

    MATH  Google Scholar 

  42. S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, 1970.

    Google Scholar 

  43. I. Pratt-Hartmann, Empiricism and racionalism in region-based theories of space, Funadam. Informa. 46, (2001), 159–186.

    MATH  Google Scholar 

  44. I. Pratt-Hartmann, A Topological constraint language with component counting, J. Appl. Non-Classical Logics 12 (2002), no 3–4, 441–467.

    Article  Google Scholar 

  45. I. Pratt-Hartmann, First-order region-based theories of space, In: Logic of Space, M. Aiello, I. Pratt and J. van Benthem (Eds.), 2006. [To appear]

    Google Scholar 

  46. I. Pratt and D. Schoop, A complete axiom system for polygonal mereotopology of the real plane, J. Philos. Logic 27 (1998), no. 6, 621–661.

    Article  MATH  Google Scholar 

  47. I. Pratt and D. Schoop, Expressivity in polygonal plane mereotopology, J. Symb. Log. 65 (2000), 822–838.

    Article  MATH  Google Scholar 

  48. D. A. Randell, Z. Cui and A. G. Cohn, A spatial logic based on regions and connection, In: Proceedings of the 3rd International Conference Knowledge Representation and Reasoning, B. Nebel, W. Swartout, and C. Rich (Eds.), Morgan Kaufmann, 1992, pp. 165–176.

    Google Scholar 

  49. P. Roeper, Region-based topology, J. Philos. Logic 26 (1997), 251–309.

    Article  MATH  Google Scholar 

  50. D. J. Schoop, Points in point-free mereotopology, Fundam. Inform. 46, (2001), 129–143.

    MATH  Google Scholar 

  51. E. Shchepin, Real-valued functions and spaces close to normal, Siberian Math. J. 13 (1972), 820–830.

    Article  Google Scholar 

  52. R. Sikorski, Boolean Algebras, Springer, 1964.

    Google Scholar 

  53. P. Simons, PARTS. A Study in Ontology, Oxford, Clarendon Press, 1987.

    Google Scholar 

  54. J. Stell, Boolean connection algebras: A new approach to the Region Connection Calculus, Artif. Intell. 122 (2000), 111–136.

    Article  MATH  Google Scholar 

  55. M. H. Stone, The theory of representations for Boolean algebras, Trans. Am. Math. Soc. 40, (1937), 37–111

    Article  Google Scholar 

  56. W. J. Thron, Proximity structures and grills, Math. Ann. 206 (1973), 35–62.

    Article  MATH  Google Scholar 

  57. A. Tarski, Les fondements de la gsèomètrie des corps, In: First Polish Mathematical Congress, Lwø’w, 1927; English transl.: Foundations of the Geometry of Solids, In: Logic, Semantics, Metamathematics, J. H. Woodger (Ed.), Clarendon Press, 1956, pp. 24–29.

    Google Scholar 

  58. A. Tarski, On the foundations of Boolean Algebra, [in German] Fundam. Inform. 24, (1935), 177–198; English transl. in: Logic, Semantics, Metamathematics, J. H.Woodger (Ed.), Clarendon Press, 1956, pp. 320–341.

    MATH  Google Scholar 

  59. A. Urquhart, A topological representation theory for lattices, Algebra Univers. 8, (1978), 45–58.

    Article  MATH  Google Scholar 

  60. D. Vakarelov, Proximity modal logic, In: Proceedings of the 11th Amsterdam Colloquium, December 1997, pp. 301–308.

    Google Scholar 

  61. D. Vakarelov, G. Dimov, I. Düntsch, and B. Bennett, A proximity approach to some region-based theories of space, J. Appl. Non-Classical Logics 12 (2002), no. 3–4, 527–559.

    Article  Google Scholar 

  62. D. Vakarelov, I. Düntsch, and B. Bennett, A note on proximity spaces and connection based mereology, In: Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS’01), 2001, C. Welty-B. Smith (Eds.), pp. 139–150.

    Google Scholar 

  63. H. de Vries, Compact Spaces and Compactifications, Van Gorcum, 1962

    Google Scholar 

  64. A. N. Whitehead, Process and Reality, New York, MacMillan, 1929.

    MATH  Google Scholar 

  65. F. Wolter. and M. Zakharyaschev, Spatial representation and reasoning in RCC-8 with Boolean region terms, In: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), Horn W. (Ed.), IOS Press, pp. 244–248.

    Google Scholar 

  66. G. H. von Wright, A new system of modal logic, In: Actes du XI Congrès International de Philosophie, Bruxelles 1953; Amsterdam 1953, Vol. 5, pp. 59–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vakarelov, D. (2007). Region-Based Theory of Space: Algebras of Regions, Representation Theory, and Logics. In: Gabbay, D.M., Zakharyaschev, M., Goncharov, S.S. (eds) Mathematical Problems from Applied Logic II. International Mathematical Series, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69245-6_6

Download citation

Publish with us

Policies and ethics