First-Order Logic Foundation of Relativity Theories

  • Judit X. Madarász
  • István Németi
  • Gergely Székely
Part of the International Mathematical Series book series (IMAT, volume 5)


Motivation and perspective for an exciting new research direction interconnecting logic, spacetime theory, relativity—including such revolutionary areas as black hole physics, relativistic computers, new cosmology—are presented in this paper. We would like to invite the logician reader to take part in this grand enterprise of the new century. Besides general perspective and motivation, we present initial results in this direction.


Black Hole Axiom System Timelike Curve Coordinate Point Black Hole Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Andréka, J. X. Madarász, and I. Németi, Logical axiomatizations of space-time, In: Non-Euclidean Geometries: János Bolyai Memorial Volume, A. Prékopa and E. Molnár (Eds.), Springer, 2006, pp. 155–185. []Google Scholar
  2. 2.
    H. Andréka, J. X. Madarász, and I. Németi with contributions from A. Andai, G. Sági, I. Sain, and Cs. Tőke, On the Logical Structure of Relativity Theories, Research report, Alfréd Rényi Institute of Mathematics, Budapest, 2002. [http:/]Google Scholar
  3. 3.
    H. Andréka, J. X. Madarász, and I. Németi, The logic of space-time. [To appear]Google Scholar
  4. 4.
    H. Andréka, J. X. Madarász, and I. Németi, Logical analysis of relativity theories, In: First-Order Logic Revisited, Logos, Berlin, 2004, pp. 7–36.Google Scholar
  5. 5.
    H. Andréka, I. Németi, and C. Wüthrich, A twist in the geometry of rotating black holes: seeking the cause of acausality. [To appear]Google Scholar
  6. 6.
    J. Ax, The elementary foundations of spacetime, Found. Phys. 8 (1978), 507–546.CrossRefGoogle Scholar
  7. 7.
    J. Barwise and J. Etchemendy, The Liar: An Essay on Truth and Circularitym Oxford Univ. Press, 1987.Google Scholar
  8. 8.
    C. H. Brans, Gravity and the Tenacious Scalar Field, 1979. [arXiv:gr-qc/9705069]Google Scholar
  9. 9.
    C. H. Brans, The Roots of Scalar-Tensor Theory: an Approximate History, 2004. [arXiv:gr-qc/0506063]Google Scholar
  10. 10.
    S. M. Carroll, Why is the Universe Accelerating, 2003. [arXiv:astroph/0310342]Google Scholar
  11. 11.
    C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973, 1990.Google Scholar
  12. 12.
    R. d’Inverno, Introducing Einstein’s Relativity, Clarendon, Oxford, 1992.MATHGoogle Scholar
  13. 13.
    Gy. Dávid, Modern cosmology-astronomical, physical and logical approaches, Abstracts of Invited talks in “Logic in Hungary 2005.” [] []Google Scholar
  14. 14.
    Gy. Dávid and I. Németi, Relativistic computers and the Turing barrier, J. Appl. Math. Comput. (2006). [To appear] []Google Scholar
  15. 15.
    J. Earman, Bangs, Crunches, Whimpers, and Shrieks, Oxford Univ. Press, 1995.Google Scholar
  16. 16.
    J. Earman and J. D. Norton, Forever is a day: supertasks in Pitowsky and Malament-Hogarth spacetimes, Philos. Sci. 60 (1993), 22–42.CrossRefGoogle Scholar
  17. 17.
    J. Earman, C. Smeenk, and C. Wüuthrich, Take a Ride on a Time Machine, In: Reverberations of the Shaky Game: Festschrift for Arthur Fine, R. Jones and P. Ehrlich (Eds.), Oxford Univ. Press. [To appear]Google Scholar
  18. 18.
    A. Einstein, Über die spezielle und die allgemeine Relativitätstheorie, von F. Vieweg, Braunschweig, 1921.Google Scholar
  19. 19.
    G. Etesi and I. Németi, Non-turing computations via Malament-Hogarth space-times, Int. J. Theor. Phys. 41 (2002), 341–370. [arXiv:gr-qc/0104023]MATHCrossRefGoogle Scholar
  20. 20.
    V. Faroni, Illusions of general relativity in Brans-Dicke gravity, Phys. Rev. D 59 (1999), 084021–084027.CrossRefGoogle Scholar
  21. 21.
    J. Ferreirós, The road to modern logic — an interpretation, Bull. Symb. Log. 7 (2001), no. 4, 441–484.MATHCrossRefGoogle Scholar
  22. 22.
    H. Friedman, On foundational thinking 1, Posting in Foundations of Mathematics Archives, 2004. [].Google Scholar
  23. 23.
    H. Friedman, On foundations of special relativistic kinematics 1, Posting No 206 in Foundations of Mathematics Archives, 2004. []Google Scholar
  24. 24.
    L. Fuchs, Partially Ordered Algebraic Systems, Pergamon, Oxford, 1963.MATHGoogle Scholar
  25. 25.
    K. Gödel, An example of a new type of cosmological solution of Einstein’s field equations of gravitation, Rev. Mod. Phys. 21 (1949), 447–450.MATHCrossRefGoogle Scholar
  26. 26.
    R. Goldblatt, Orthogonality and Spacetime Geometry, Springer, 1987.Google Scholar
  27. 27.
    R. J. Gott, Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions, Phys. Rev. Lett. 66 (1991), 1126–1129.MATHCrossRefGoogle Scholar
  28. 28.
    R. J. Gott, Time Travel in Einstein’s Universe: The Physical Possibilities of Travel Through Time, Houghton Mifflin, New York, 2002.Google Scholar
  29. 29.
    A. Günbaum, Philosophical Problems of Space and Time, Dover, New York, 1963.Google Scholar
  30. 30.
    P. Hájek and P. Pudlák, Metamathematics of First-Order Arithmetic, Springer, 1993.Google Scholar
  31. 31.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, 1973.Google Scholar
  32. 32.
    L. Henkin, A. Tarski, and P. Suppes (Eds.) The Axiomatic Method with Special Reference to Geometry and Physics, North-Holland, 1959.Google Scholar
  33. 33.
    D. Hilbert, Mathematische Behandlung der Axiome der Physik, Akad. Wiss. Göttingen (1990), pp. 272–273. []Google Scholar
  34. 34.
    D. Hilbert, Über den Satz von der Gleichheit der Basiswinkel im gleichschenkligen Dreieck, Proc. London Math. Soc. 35 (1902/1903), 50–68.CrossRefGoogle Scholar
  35. 35.
    R. Hirsch, Logic and Dialectics, Cultural Logic, Spring, 2004.Google Scholar
  36. 36.
    W. Hodges, Model Theory, Cambridge Univ. Press, 1997.Google Scholar
  37. 37.
    M. L. Hogarth, Deciding arithmetic using SAD computers, Br. J. Phil. Sci. 55 (2004), no.4, 681–691.MATHCrossRefGoogle Scholar
  38. 38.
    M. L. Hogarth, Predictability, Computability and Spacetime, PhD Thesis, Univ. Cambridge, UK, 2002. []Google Scholar
  39. 39.
    R. Horváth, An Alexandrov-Zeeman type theorem and relativity theory, Eötvös Loránd Univ. Budapest, 2005.Google Scholar
  40. 40.
    R. Horváth and G. Székely, An Alexandrov-Zeeman type theorem and its consequences in special relativity. [To appear]Google Scholar
  41. 41.
    H. A. Lorentz Electromagnetic phenomena in a system moving with any velocity less than that of light, Proc. Royal Acad. Amsterdam 6 (1904), 809–831.Google Scholar
  42. 42.
    J. X. Madarász, Logic and Relativity (in the Light of Definability Theory), PhD Thesis, Eötvös Loránd Univ., Budapest, 2002. []Google Scholar
  43. 43.
    J. X. Madarász, I. Németi, and Cs. Tőke, On generalizing the logicapproach to space-time towards general relativity: first steps, In: First-Order Logic Revisited, Logos, Berlin, 2004, pp. 225–268.Google Scholar
  44. 44.
    J. X. Madarász, I. Németi, and G. Székely, Twin paradox and the logical foundation of relativity theory, Found. Phys. (2006). [To appear] [arXiv:gr-qc/0504118]Google Scholar
  45. 45.
    J. X. Madarász, I. Németi, and G. Székely, A logical analysis of the time-warp effect of general relativity. [To appear]Google Scholar
  46. 46.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W.H. Freeman, 1973.Google Scholar
  47. 47.
    B. O’Neill, The Geometry of Kerr Black Holes A. K. Peters, 1995.Google Scholar
  48. 48.
    V. Pambuccian, Axiomatizations of hyperbolic and absolute geometries, In: Non-Euclidean Geometries: János Bolyai Memorial Volume, A. Prékopa and E. Molnár (Eds). Springer, 2006, pp.119–153.Google Scholar
  49. 49.
    C. S. Reynolds, L. W. Brenneman, and D. Garofalo, Black hole spin in AGN and GBHCs, Astrophys. Space Sci. 300 (2005), 71–79. [arXiv:astro-ph/0410116]CrossRefGoogle Scholar
  50. 50.
    H. Reichenbach, Axiomatik der relativistische Raum-Zeit-Lehre, 1924; English transl.: Axiomatization of the Theory of Relativity, Univ. California, Berkeley, 1969.Google Scholar
  51. 51.
    H. Reichenbach, The Philosophy of Space and Time, Dover, 1958.Google Scholar
  52. 52.
    W. Rindler, Relativity. Special, General and Cosmological, Oxford Univ. Press, 2001.Google Scholar
  53. 53.
    W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1953.Google Scholar
  54. 54.
    J. Q. Schutz, Foundations of Special Relativity: Kinematic Axioms for Minkowski Space-Time, Springer, 1973.Google Scholar
  55. 55.
    Gy. Serény, Boolos-style proofs of limitative theorems, Math. Log. Q. 50 (2004), no. 2, 211–216.MATHCrossRefGoogle Scholar
  56. 56.
    S. G. Simpson (Ed.), Reverse Mathematics 2001, Lect. Notes Logic 21, Association for Symbolic Logic (ASL), 2005.Google Scholar
  57. 57.
    W. J. van Stockum, The gravitational field of a distribution of particles rotating around an axis of symmetry, Proc. R. Soc. Edinb. 57 (1937), 135–154.Google Scholar
  58. 58.
    T. E. Strohmayer, Discovery of a 450 HZ quasi-periodic oscillation from the microquasar GRO J1655-40 with the Rossi X-Ray Timing Explorer, Astrophys. J. Lett. 552 (2001), L49–L53. [arXiv:astro-ph/0104487]CrossRefGoogle Scholar
  59. 59.
    P. Suppes, Axioms for relativistic kinematics with or without parity, In: The Axiomatic Method with Special Reference to Geometry and Physics, L. Henkin, P. Suppes and A. Tarski (Eds.), North-Holland, 1959.Google Scholar
  60. 60.
    P. Suppes, The desirability of formalization in science, J. Philos. 65 (1968), 651–664.CrossRefGoogle Scholar
  61. 61.
    G. Székely, A First-Order Logic Investigation of the Twin Paradox and Related Subjects, Master’s Thesis, Eötvös Loránd Univ. Budapest, 2004.Google Scholar
  62. 62.
    A. Tarski, A Decision Method for Elementary Algebra and Geometry, Univ. California, Berkeley, 1951.MATHGoogle Scholar
  63. 63.
    E. F. Taylor and J. A. Wheeler, Exploring Black Holes: Introduction to General Relativity, Addison Wesley, 2000.Google Scholar
  64. 64.
    F. J. Tipler, Rotating cylinders and the possibility of global causality violation, Phys. Rev. D 9 (1974), 2203–2206.CrossRefGoogle Scholar
  65. 65.
    J. Väänänen, Second-order logic and foundations of mathematics, Bull. Symb. Log. 7 (2001), 504–520.MATHCrossRefGoogle Scholar
  66. 66.
    R.M. Wald, General Relativity, Univ. Chicago, 1984.Google Scholar
  67. 67.
    J. Woleński, First-order logic: (philosophical) pro and contra, In: First-Order Logic Revisited, Logos, Berlin, 2004, pp. 369–398.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Judit X. Madarász
    • 1
  • István Németi
    • 1
  • Gergely Székely
    • 1
    • 2
  1. 1.Alfréd Rényi Institute of Mathematics HASBudapestHungary
  2. 2.Eötvös Loránd University BudapestBudapest

Personalised recommendations