Skip to main content

Computability and Computable Models

  • Chapter

Part of the book series: International Mathematical Series ((IMAT,volume 5))

Abstract

The intuitive notion of computability was formalized in the XXth century, which strongly affected the development of mathematics and applications, new computational technologies, various aspects of the theory of knowledge, etc. A rigorous mathematical definition of computability and algorithm generated new approaches to understanding a solution to a problem and new mathematical disciplines such as computer science, algorithmical complexity, linear programming, computational modeling and simulation databases and search algorithms, automatical cognition, program languages and semantics, net security, coding theory, cryptography in open systems, hybrid control systems, information systems, etc.

The author was supported by the Russian Foundation for Basic Research (grant no. 05-01-00819) and the President grant of Scientific Schools (grant no. 4413.2006.01).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. J. Ash, Categoricity in hyperarithmetical degrees, Ann. Pure Appl. Logic 34 (1987), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. J. Ash and J. F. Knight, Pairs of computable structures, Ann. Pure Appl. Logic 46 (1990), 211–234.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. J. Ash and J. F. Knight, Possible degrees in computable copies, Ann. Pure Appl. Logic 75 (1995), no. 3, 215–221.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. J. Ash and J. F. Knight, Possible degrees in computable copies II, Ann. Pure Appl. Logic 87 (1997), no. 2, 151–165.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, 2000.

    Google Scholar 

  6. C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures, Ann. Pure Appl. Logic 42 (1989), no. 3, 195–205.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. J. Ash and T. S. Millar, Persistently finite, persistently arithmetic theories, Proc. Am. Math. Soc. 89 (1983), no. 3, 487–492.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. J. Ash and A. Nerode, Intrinsically computable relations, In: Aspects of Effective Algebra, J. N. Crossley (Ed.), Upside Down A Book Co., Steel’s Creek, Australia, pp. 26–41.

    Google Scholar 

  9. E. Baldwin and A. Lachlan, The quantity of non-autoequivalent constructivizations, J. Symb. Log. 36 (1971), 79–96.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Barker, Intrinsically Σ 0α relations, Ann. Pure Appl. Logic 39 (1988), 105–130

    Article  MATH  MathSciNet  Google Scholar 

  11. K. J. Barwise, Infinitary logic and admissible sets, J. Symb. Log. 34 (1969), 226–252.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors, John Wiley & Sons, London-New York-Sydney, 1968.

    MATH  Google Scholar 

  13. W. Calvert, S. S. Goncharov, and J. F. Knight, Computable Structures of Scott Rank ω CK1 in Familiar Classes, Preprint.

    Google Scholar 

  14. W. Calvert, J. F. Knight, and J. M. Young [Millar], Computable Trees of Scott Rank ω CK1 and Computable Approximation, Preprint.

    Google Scholar 

  15. R. Camerlo and S. Gao, The completeness of the isomorphism relation for countable Boolean algebras, Trans. Am. Math. Soc. 353 (2000), 491–518.

    Article  MathSciNet  Google Scholar 

  16. C. C. Chang and H.-J. Keisler, Model Theory, North-Holland, Amsterdam, 1990.

    MATH  Google Scholar 

  17. J. Chisholm, Effective model theory versus computable model theory, J. Symb. Log. 55 (1990), 1168–1191.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Cholak, S. S. Goncharov, B. Khoussainov, and R. A. Shore, Computably categorical structures and expansions by constants, J. Symb. Log. 64 (1999), 13–37.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Downey and C. Jockusch, Array noncomputable degrees and genericity, In: Computability, Enumerability, Unsolvability, London Math. Soc. Lect. Notes Ser. 224, Cambridge Univ. Press, 1996, pp. 93–104.

    Google Scholar 

  20. D. Deutsch, The Fabric of Reality, The Penguin Press, New York, 2000.

    Google Scholar 

  21. V. P. Dobritsa, Recursively numbered classes of constructive extentions and autostability of algebras, Sib. Math. J. 16 (1975), no. 6, 879–883.

    Article  Google Scholar 

  22. V. P. Dobritsa, Computability of certain classes of constructive algebras, Sib. Math. J. 18 (1977), no. 3, 406–413.

    Article  MathSciNet  Google Scholar 

  23. V. D. Dzgoev and S. S. Goncharov, Autostable models, Algebra Log. 19 (1980), 28–37.

    Article  MATH  MathSciNet  Google Scholar 

  24. Yu. L. Ershov and E. A. Palutin, Mathematical Logic [in Russian], Mir Publisher, Moscow, 1984.

    Google Scholar 

  25. Yu. L. Ershov, On a hierarchy of sets. I, Algebra Log. 7 (1968), no. 1, 47–74.

    MATH  Google Scholar 

  26. Yu. L. Ershov, On a hierarchy of sets. II, Algebra Log. 7 (1968), no. 4, 15–47.

    MATH  Google Scholar 

  27. Yu. L. Ershov, Computable enumerations, Algebra Log. 7 (1968) no. 5, 71–99.

    Google Scholar 

  28. Yu. L. Ershov, Numbered fields In: Logic, Methodology Philos. Sci. III (Proc. Third Internat. Congr., Amsterdam, 1967), North-Holland, Amsterdam, 1968, pp. 31–34

    Google Scholar 

  29. Yu. L. Ershov, On a hierarchy of sets. III, Algebra Log. 9 (1970), no. 1, 20–31.

    Article  MATH  Google Scholar 

  30. Yu. L. Ershov, On index sets, Sib. Math. J. 11 (1970), no. 2, 246–258.

    Article  MATH  Google Scholar 

  31. Yu. L. Ershov, Existence of constructivizations, Soviet Math. Dokl. 13 (1972), no. 5, 779–783.

    MATH  Google Scholar 

  32. Yu. L. Ershov, Constructive models [in Russian], In: Selected Questions of Algebra and Logic, Novosibirsk, 1973, pp. 111–130.

    Google Scholar 

  33. Yu. L. Ershov, Skolem functions and constructive models, Algebra Log. 12 (1973), no. 6, 368–373.

    Article  Google Scholar 

  34. Yu. L. Ershov, Numbering Theory. 3 [in Russian], In: Constructive Models, Novosibirsk State Univ., Novosibirsk, 1974.

    Google Scholar 

  35. Yu. L. Ershov, Theorie der Numerierungen. III, Z. Logik Grundlag. Math. 23 (1977), 289–371.

    Article  MATH  Google Scholar 

  36. Yu. L. Ershov, Theory of Numberings [in Russian], Nauka, Moscow, 1977.

    Google Scholar 

  37. Yu. L. Ershov, The Decidability Problems and Constructive Models, Nauka, Moscow, 1980.

    Google Scholar 

  38. Yu. L. Ershov, Definability and Computability, Consultants Bureau, New York, 1996.

    Google Scholar 

  39. Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, Handbook of Recursive Mathematics, Elsevier, Amsterdam, 1998.

    Google Scholar 

  40. Yu. L. Ershov and S. S. Goncharov, Constructive Models, Kluwer Academic/Plenum Press, New York, 2000.

    MATH  Google Scholar 

  41. Yu. L. Ershov and I. A. Lavrov, Upper semilattice L(S). Algebra Log. 12 (1973), no. 2, 167–189.

    Google Scholar 

  42. H. Friedman, Computableness in Π 11 paths through O, Proc. Am. Math. Soc. 54 (1976), 311–315.

    Article  MATH  Google Scholar 

  43. E. Fokina, About complexity of categorical theories with computable models [in Russian], Vestnik NGU 5 (2005), no. 2, 78–86.

    Google Scholar 

  44. A. Fröhlich and J. Shepherdson, Effective procedures in field theory, Philos. Trans. Roy. Soc. London, Ser. A 248 (1956), 407–432.

    Article  MATH  Google Scholar 

  45. S. S. Goncharov, Autostability and computable families of constructivizations, Algebra Log. 14 (1975), 392–408.

    Article  Google Scholar 

  46. S. S. Goncharov, The quantity of non-autoequivalent constructivizations, Algebra Log. 16 (1977), 257–282.

    MATH  MathSciNet  Google Scholar 

  47. S. S. Goncharov, Constructive models of ℵ 1-categorical theories, Math. Notes 23 (1978), no. 6, 486–487.

    MATH  MathSciNet  Google Scholar 

  48. S. S. Goncharov, Problem of the number of non-self-equivalent constructivizations, Algebra Log. 19 (1980), 401–414.

    Article  MATH  Google Scholar 

  49. S. S. Goncharov, Problem of the number of non-self-equivalent constructivizations, Soviet Math. Dokl. 21 (1980), 411–414.

    MATH  Google Scholar 

  50. S. S. Goncharov, Computable single-valued numerations, Algebra Log. 19 (1980), 325–356.

    Article  MATH  Google Scholar 

  51. S. S. Goncharov, The quantity of non-autoequivalent constructivizations, Algebra Log. 16 (1977) 169–185.

    Article  MathSciNet  Google Scholar 

  52. S. S. Goncharov, Strong constructivizability of homogeneous models, Algebra Log. 17 (1978), no. 4, 247–262.

    Article  MATH  MathSciNet  Google Scholar 

  53. S. S. Goncharov, A totally transcendental decidable theory without constructivizable homogeneous models, Algebra Log. 19 (1980), no. 2, 85–93.

    Article  MATH  MathSciNet  Google Scholar 

  54. S. S. Goncharov, Countable Boolean Algebras [in Russian], Nauka, Novosibirsk, 1988.

    MATH  Google Scholar 

  55. S. S. Goncharov, Computable classes of constructivizations for models of finite computability type, Sib. Math. J. 34 (1993), no. 5, 812–824.

    Article  MATH  MathSciNet  Google Scholar 

  56. S. S. Goncharov, Effectively infinite classes of weak constructivizations of models, Algebra Log. 32 (1993), no. 6, 342–360.

    Article  MathSciNet  Google Scholar 

  57. S. S. Goncharov, Countable Boolean Algebras and Decidability, Consultants Bureau, New York, 1997.

    MATH  Google Scholar 

  58. S. S. Goncharov, Computable models and computable numberings In: Proc. Logic Colloquium 2005, Athens, 2006. [To appear]

    Google Scholar 

  59. S. S. Goncharov and B. N. Drobotun, Numerations of saturated and homogeneous models, Sib. Math. J. 21 (1980), no. 2, 164–175.

    Article  MATH  MathSciNet  Google Scholar 

  60. S. S. Goncharov and B. N. Drobotun, Algorithmic dimension of nilpotent groups, Sib. Math. J. 30 (1989), no. 2, 210–216.

    Article  MATH  MathSciNet  Google Scholar 

  61. S. S. Goncharov, V. S. Harizanov, M. Laskowski, S. Lempp, and Ch. Mccoy, Trivial, strongly minimal theories are model complete after naming constants, Proc. Am. Math. Soc. 131 (2003), no. 12, 3901–3912.

    Article  MATH  MathSciNet  Google Scholar 

  62. S. S. Goncharov and B. Khoussainov, On the spectrum of the degrees of decidable relations, Dokl. Akad. Nauk 352 (1997), no. 3, 301–303.

    MATH  MathSciNet  Google Scholar 

  63. S. S. Goncharov, A. V. Molokov, and N. S. Romanovskii, Nilpotent groups of finite algorithmic dimension, Sib. Math. J. 30 (1989), no. 1, 63–67.

    Article  MATH  MathSciNet  Google Scholar 

  64. S. S. Goncharov and A. A. Novikov, Examples of nonautostable systems, Sib. Math. J. 25 (1984), no. 4, 538–544.

    Article  MATH  MathSciNet  Google Scholar 

  65. S. S. Goncharov and A. T. Nurtazin, Constructive models of complete solvable theories, Algebra Log. 12 (1973), no. 2, 67–77.

    Article  Google Scholar 

  66. S. S. Goncharov and J. F. Knight, Computable structure/nonstructure theorems, Algebra Log. 41 (2002), 351–373.

    Article  MathSciNet  Google Scholar 

  67. S. S. Goncharov, and B. Khoussainov, Open problems in the theory of constructive algebraic systems, Contemp. Math. (AMS) 257 (2000), 145–170.

    MathSciNet  Google Scholar 

  68. S. S. Goncharov, and B. Khoussainov, Complexity of categorical theories with computable models, Algebra Log. 43 (2004), no. 6, 365–373.

    Article  MathSciNet  Google Scholar 

  69. S. S. Goncharov, and B. N. Drobotun, Numerations of saturated and homogeneous models, Sib. Math. J. 30 (1989), 164–175.

    MathSciNet  Google Scholar 

  70. S. S. Goncharov, V. S. Harizanov, J. F. Knight, and R. Shore, II 11 -relations and paths through, J. Symb. Log. 69 (2004), no. 2, 585–611.

    Article  MATH  MathSciNet  Google Scholar 

  71. S. S. Goncharov, V. S. Harizanov, J. F. Knight, A. Morozov, and A. Romina, On automorphic tuples of elements in computable models, Sib. Math. J. 46 (2005), no. 3, 405–412.

    Article  MathSciNet  Google Scholar 

  72. S. S. Goncharov, V. S. Harizanov, J. F. Knight, C. McCoy, R. G. Miller, and R. Solomon, Enumerations in computable structure theory, Ann. Pure Appl. Logic 136 (2005), no. 3, 219–246.

    Article  MATH  MathSciNet  Google Scholar 

  73. S. S. Goncharov and A. Sorbi, Generalized computable numerations and nontrivial Rogers semilattices, Algebra Log. 36 (1997), no. 4, 359–369.

    Article  MathSciNet  Google Scholar 

  74. L. Harrington, Recursively presentable prime models, J. Symb. Log. 39 (1974), no. 2, 305–309.

    Article  MATH  MathSciNet  Google Scholar 

  75. V. S. Harizanov, Some effects of Ash-Nerode and other decidability conditions on degree spectra, Ann. Pure Appl. Logic 55 (1991), 51–65.

    Article  MATH  MathSciNet  Google Scholar 

  76. J. Harrison, Computable pseudo well-orderings, Trans. Am. Math. Soc. 131 (1968), 526–543.

    Article  MATH  MathSciNet  Google Scholar 

  77. D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, Degree spectra and computable dimensions in algebraic structures, Ann. Pure Appl. Logic 115 (2002), 71–113.

    Article  MATH  MathSciNet  Google Scholar 

  78. W. Hodges, What is a structure theory? Bull. London Math. Soc. 19 (1987), 209–237.

    Article  MATH  MathSciNet  Google Scholar 

  79. C. G. Jockusch, Computableness of initial segments of Kleene’s O, Fund. Math. 87 (1975), 161–167.

    MATH  MathSciNet  Google Scholar 

  80. C. G. Jockusch and T. G. McLaughlin, Countable retracing functions and II 02 predicates, Pac. J. Math. 30 (1969), 67–93.

    MATH  MathSciNet  Google Scholar 

  81. C. G. Jockusch and R. I. Soare, Degrees of orderings not isomorphic to computable linear orderings, Ann. Pure Appl. Logic 52 (1991), 39–64.

    Article  MATH  MathSciNet  Google Scholar 

  82. I. Kaplansky, Infinite Abelian Groups, Univ. Michigan Press, 1954.

    Google Scholar 

  83. N. G. Khisamiev, Strongly constructive models, Izv. Akad. Nauk Kaz.SSR, Ser. Fiz-Mat. (1971), no. 3, 59–63.

    Google Scholar 

  84. N. G. Khisamiev, Strongly constructive models of a decidable theory, Izv. Akad. Nauk Kaz.SSR, Ser. Fiz-Mat. (1974), no. 1, 83–84.

    Google Scholar 

  85. B. Khoussainov and R. A. Shore, Computable isomorphisms, degree spectra of relations and Scott families, Ann. Pure Appl. Logic 93 (1998), 153–193.

    Article  MATH  MathSciNet  Google Scholar 

  86. B. Khoussainov, S. Lempp, and R. Solomon. Preprint

    Google Scholar 

  87. A. B. Khoutoretskii, On the cardinality of the upper semilattice of computable enumerations, Algebra Log. 10 (1971), no. 5, 348–352.

    Article  Google Scholar 

  88. H. J. Keisler, Model Theory for Infinitary Logic, North-Holland, 1971.

    Google Scholar 

  89. J. F. Knight, Degrees coded in jumps of orderings, J. Symb. Log. 51 (1986), 1034–1042.

    Article  MATH  MathSciNet  Google Scholar 

  90. J. F. Knight, Nonarithmetical ℵ 0-categorical theories with recursive models, J. Symb. Log. 59 (1994), no. 1, 106–112.

    Article  MATH  MathSciNet  Google Scholar 

  91. J. F. Knight, Effective transfer of invariants, J. Symb. Log. [To appear]

    Google Scholar 

  92. J. F. Knight and J. M. Young [Millar], Computable structures of rank ω CK1 , J. Math. Logic [To appear]

    Google Scholar 

  93. G. Kreisel, Set-theoretic problems In: Infinitistic Methods: Proc. of Symp. on Found. of Math. pergamon, Warsaw, 1961, pp. 103–140.

    Google Scholar 

  94. C. Karp, Languages with Expressions of Infinite Length, PhD Thesis, Univ. South. California, 1959.

    Google Scholar 

  95. A. H. Lachlan, Solution to a problem of Spector, Canad. J. Math. 23 (1971), 247–256.

    MATH  MathSciNet  Google Scholar 

  96. M. Lerman and J. H. Schmerl, Theories with recursive models, J. Symb. Log. 44 (1979), no. 1, 59–76.

    Article  MATH  MathSciNet  Google Scholar 

  97. Logic Notebook. Unsolved Problems in Mathematical Logic, Novosibirsk, 1986.

    Google Scholar 

  98. E. Lopez-Escobar, On definable well-orderings, Fund. Math. 57 (1966), 299–300.

    MathSciNet  Google Scholar 

  99. M. Makkai, An example concerning Scott heights, J. Symb. Log. 46 (1981), 301–318.

    Article  MATH  MathSciNet  Google Scholar 

  100. A. I. Mal’tsev, Constructive algebras. I [in Russian], Usp. Mat. Nauk 16 (1961), no. 3, 3–60.

    Google Scholar 

  101. A. I. Mal’tsev, On recursive Abelian groups, Dokl. Akad. Nauk SSSR 146 (1962), no. 5, 1009–1012.

    MathSciNet  Google Scholar 

  102. A. I. Mal’tsev, On the theory of computable families of objects, Algebra Log. 3 (1964), no. 4, 5–31.

    MathSciNet  Google Scholar 

  103. A. I. Mal’tsev, Algorithms and Recursive Functions, Wolters-Noordhoff, Groningen, 1970.

    Google Scholar 

  104. A. I. Mal’tsev, Algebraic Systems, Springer, New York-Heidelberg, 1973.

    Google Scholar 

  105. A. I. Mal’tsev, Selected Works. Mathematical Logic and the General Theory of Algebraic Systems. Vol. 2 [in Russian], Nauka, Moscow, 1976.

    Google Scholar 

  106. M. S. Manasse, Techniques and Counterexamples in Almost Categorical computable Model Theory, PhD Thesis, Univ. Wisconsin-Madison, 1982.

    Google Scholar 

  107. T. S. Millar, Persistantly finite theories with hyperarithmetic models, Trans. Am. Math. Soc. 278 (1983), no. 1, 91–99.

    Article  MATH  MathSciNet  Google Scholar 

  108. T. S. Millar, Foundations of recursive model theory, Ann. Math. Logic 13 (1978), no. 1, 45–72.

    Article  MATH  MathSciNet  Google Scholar 

  109. T. S. Millar, A complete, decidable theory with two decidable models, J. Symb. Log. 44 (1979), no. 3, 307–312.

    Article  MATH  MathSciNet  Google Scholar 

  110. T. S. Millar, Homogeneous models and decidability, Pac. J. Math. 91 (1980), no. 2, 407–418.

    MATH  MathSciNet  Google Scholar 

  111. T. S. Millar, Vaught’s theorem recursively revisited, J. Symb. Log. 46 (1981), no. 2, 397–411.

    Article  MATH  MathSciNet  Google Scholar 

  112. T. S. Millar, Counterexamples via model completions, Lect. Notes Math. 859 Springer, 1981, pp. 215–229.

    Article  MathSciNet  Google Scholar 

  113. T. S. Millar, Type structure complexity and decidability, Trans. Am. Math. Soc. 271 (1982), no. 1, 73–81.

    Article  MATH  MathSciNet  Google Scholar 

  114. T. S. Millar, Omitting types, type spectrums, and decidability, J. Symb. Log. 48 (1983), no. 1, 171–181.

    Article  MATH  MathSciNet  Google Scholar 

  115. T. S. Millar, Decidability and the number of countable models, Ann. Pure Appl. Logic 27 (1984), no. 2, 137–153.

    Article  MATH  MathSciNet  Google Scholar 

  116. T. S. Millar, Decidable Ehrenfeucht theories, Proc. Sympos. Pure Math. 42 (1985), 311–321.

    MathSciNet  Google Scholar 

  117. T. S. Millar, Prime models and almost decidability, J. Symb. Log. 51 (1986), no. 2, 412–420.

    Article  MATH  MathSciNet  Google Scholar 

  118. T. S. Millar, Recursive categoricity and persistence, J. Symb. Log. 51 (1986), no. 2, 430–434.

    Article  MATH  MathSciNet  Google Scholar 

  119. T. S. Millar, Bad models in nice neighborhoods, J. Symb. Log. 51 (1986), no. 4, 1043–1055.

    Article  MATH  MathSciNet  Google Scholar 

  120. T. S. Millar, Finite extensions and the number of countable models, J. Symb. Log. 54 (1989), no. 1, 264–270.

    Article  MATH  MathSciNet  Google Scholar 

  121. T. S. Millar, Homogeneous models and almost decidability, J. Aust. Math. Soc. Ser. A 46 (1989), no. 3, 343–355.

    Article  MATH  MathSciNet  Google Scholar 

  122. T. S. Millar, Tame theories with hyperarithmetic homogeneous models, Proc. Am. Math. Soc. 105 (1989), no. 3, 712–726.

    Article  MATH  MathSciNet  Google Scholar 

  123. T. S. Millar, Model completions and omitting types, J. Symb. Log. 60 (1995), no. 2, 654–672.

    Article  MATH  MathSciNet  Google Scholar 

  124. F. Montagna and A. Sorbi, Universal recursion-theoretic properties of r.e. preordered structures, J. Symb. Log. 50 (1985), no. 2, 397–406.

    Article  MATH  MathSciNet  Google Scholar 

  125. M. Morley, Decidable models, Israel J. Math. 25 (1976), 233–240.

    MATH  MathSciNet  Google Scholar 

  126. M. Morley, Omitting classes of elements, In: The Theory of Models, M. Addison, L. Henkin, and A. Tarski (Eds.), North-Holland, 1965, pp. 265–273.

    Google Scholar 

  127. M. E. Nadel, Scott sentences for admissible sets, Ann. Math. Log. 7 (1974), 267–0294.

    Article  MATH  MathSciNet  Google Scholar 

  128. M. E. Nadel, \( L_{\omega _1 \omega } \) and admissible fragments, In: Model-Theoretic Logics, K. J. Barwise and S. Feferman (Eds.), Springer, 1985, pp. 271–316.

    Google Scholar 

  129. A. T. Nurtazin, Strong and weak constructivization and computable families, Algebra Log. 13 (1974), no. 3, 177–184.

    Article  MathSciNet  Google Scholar 

  130. A. T. Nurtazin, Computable Models and Computable Classes, PhD Thesis, Novosibirsk, 1975.

    Google Scholar 

  131. R. Parikh, A note on paths through O, Proc. Am. Math. Soc. 39 (1973), 178–180.

    Article  MATH  MathSciNet  Google Scholar 

  132. M. G. Peretyat’kin, Strongly constructive models and numerations of the Boolean algebra of recursive sets, Algebra Log. 10 (1971), no. 5, 332–345.

    Article  MathSciNet  Google Scholar 

  133. M. G. Peretyat’kin, Every recursively enumerable extension of a theory of linear order has a constructive model, Algebra Log. 12 (1973), no. 2, 120–124.

    Article  MathSciNet  Google Scholar 

  134. M. G. Peretyat’kin, Strongly constructive model without elementary submodels and extensions, Algebra Log. 12 (1973), no. 3, 178–183.

    Article  MathSciNet  Google Scholar 

  135. M. G. Peretyat’kin, On complete theories with a finite number of denumerable models, Algebra Log. 12 (1973), no. 5, 310–326.

    Article  MathSciNet  Google Scholar 

  136. M. G. Peretyat’kin, Criterion for strong constructivizability of a homogeneous model, Algebra Log. 17 (1978), no. 4, 290–301.

    Article  MathSciNet  Google Scholar 

  137. M. O. Rabin, Effective computability of winning strategies, In: Contributions to the Theory of Games, Vol. 3, Princeton Univ. Press, Princeton, 1957, 147–157.

    Google Scholar 

  138. R. Reed, A decidable Ehrenfeucht theory with exactly two hyperarithmetic models, Ann. Pure Appl. Logic 53 (1991), no. 2, 135–168.

    Article  MATH  MathSciNet  Google Scholar 

  139. J. P. Ressayre, Models with compactness properties relative to an admissible language, Ann. Math. Log. 11 (1977), 31–55.

    Article  MATH  MathSciNet  Google Scholar 

  140. H. Rogers, Jr., Theory of Computable Functions and Effective Computability, McGraw-Hill, New York, 1967.

    Google Scholar 

  141. G. E. Sacks, On the number of countable models, In: Southeast Asian Conference on Logic (Singapore, 1981), C. T. Chong and M. J. Wicks (Eds.), North-Holland, 1983, pp. 185–195.

    Google Scholar 

  142. G. E. Sacks, Higher Recursion Theory, Springer, 1990.

    Google Scholar 

  143. D. Scott, Logic with denumerably long formulas and finite strings of quantifiers, In: The Theory of Models, J. Addison, L. Henkin, and A. Tarski (Eds.), North-Holland, 1965, 329–341.

    Google Scholar 

  144. V. L. Selivanov, Enumerations of families of general computable functions, Algebra Log. 15 (1976), 205–226.

    MATH  MathSciNet  Google Scholar 

  145. T. Slaman, Relative to any non-computable set, Proc. Am. Math. Soc. 126 (1998), 2117–2122.

    Article  MATH  MathSciNet  Google Scholar 

  146. R. I. Soare, Recursively Enumerable Sets and Degrees, Springer, 1987.

    Google Scholar 

  147. I. N. Soskov, Intrinsically II 11 relations, Math. Log Quart. 42 (1996), 109–126.

    Article  MATH  MathSciNet  Google Scholar 

  148. I. N. Soskov, Intrinsically Δ 11 relations, Math. Log Quart. 42 (1996), 469–480.

    Article  MATH  MathSciNet  Google Scholar 

  149. C. Spector, Computable well-orderings, J. Symb. Log. 20 (1955), 151–163.

    Article  MATH  MathSciNet  Google Scholar 

  150. S. Tennenbaum, Non-archimedean models for arithmetic, Notices Am. Math. Soc. 6 (1959), 270.

    Google Scholar 

  151. R. L. Vaught, Non-recursive-enumerability of the set of sentences true in all constructive models, Bull. Am. Math. Soc. 63 (1957), no. 4, 230.

    Google Scholar 

  152. R. L. Vaught, Sentences true in all constructive models, J. Symb. Log. 25, (1960), no. 1, 39–58.

    Article  MATH  MathSciNet  Google Scholar 

  153. M. C. Venning, Type Structures of ω 0-Categorical Theories, Thesis, Cornell Univ., Ithaca, 1976.

    Google Scholar 

  154. S. Wehner, Enumerations, countable structures, and Turing degrees, Proc. Am. Math. Soc. 126 (1998), 2131–2139.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goncharov, S.S. (2007). Computability and Computable Models. In: Gabbay, D.M., Zakharyaschev, M., Goncharov, S.S. (eds) Mathematical Problems from Applied Logic II. International Mathematical Series, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69245-6_3

Download citation

Publish with us

Policies and ethics