Advertisement

Neuroimaging of Parenchymal Brain Metastases

  • Matthew T. Walker
  • Vipul Kapoor
Part of the Cancer Treatment and Research book series (CTAR, volume 136)

Abstract

Metastatic disease to the central nervous system (CNS) is common and accounts for approximately 37% of intracranial neoplasms [1]. Autopsy studies have shown that 24% of patients who die from cancer have intracranial metastasis and the estimated annual incidence is approximately 170,000 cases per year [2]. Earlier detection and improved treatment of primary malignancies have contributed to the increasingly important role of imaging to detect CNS dissemination.

Keywords

Single Photon Emission Compute Tomography Brain Metastasis Diffusion Tensor Imaging Cerebral Blood Volume Single Photon Emission Compute Tomography Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landis SH, Murray T, Bolden S et al. Cancer Statistics, 1998. CA Cancer J Clin 1999;49:8–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Posner J. Management of central nervous system metastases. Semin Oncol 1977;4:81–91PubMedGoogle Scholar
  3. 3.
    Vieth RG, Odom GL. Intracranial metastases and their neurosurgical treatment. J Neurosurg 1965;23:375–383CrossRefPubMedGoogle Scholar
  4. 4.
    Egelhoff JC, Ross JS, Modic MT et al. MR imaging of metastatic GI adenocarcinoma in brain. AJNR 1992;13:1221–1224PubMedGoogle Scholar
  5. 5.
    Slimane, K, Andre F, Delaloge, S. Risk factors for brain relapse in patients with metastatic breast cancer. Ann Oncol 2004; 15:1640CrossRefPubMedGoogle Scholar
  6. 6.
    Paulino AC, Nguyen TX, Barker JL. Brain metastasis in children with sarcoma, neuroblastoma and Wilms’ tumor. Int. J Radiation Oncology Bio Phys. 2003;57(1):177–183CrossRefGoogle Scholar
  7. 7.
    Clouston PD, DeAngelis LM, Posner JB. The spectrum of neurological disease in patients with systemic cancer. Ann Neurol 1992;31(3):268–273.CrossRefPubMedGoogle Scholar
  8. 8.
    Walter BA, Valera VA, Takahashi S et al. the olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol Appl Neurobiol. 2006 Aug;32(4):388–396.CrossRefPubMedGoogle Scholar
  9. 9.
    Patchell RA. Brain metastases. Neurol Clin 1991;9:817–824.PubMedGoogle Scholar
  10. 10.
    Bruner JM, Tien RD. Secondary tumors. In: Russell DS, Rubenstein LJ (editors). Pathology of tumors of the nervous system, 6th edition. Baltimore, Williams and Wilkins, 1997;419–450.Google Scholar
  11. 11.
    Henson RA, Urich H. Metastases to the Brian. In: Henson RA, Urich H. Cancer of the nervous system. The neurological manifestations of systemic malignant disease. Oxford: Blackwell Scientific, 1982;7–58.Google Scholar
  12. 12.
    Lantos PL, Louis DN, Rosenblum MK et al. Tumours of the nervous system. In: Graham DI, Lantos PL, editors. Greenfield’s Neuropathology, 7th ed. London: Arnold, 2002:11;767–1052.Google Scholar
  13. 13.
    Pathak AP, Schmainda KM, Ward BD et al. MR-derived cerebral blood volume maps: issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med 2001;46(4):735–747.CrossRefPubMedGoogle Scholar
  14. 14.
    Law M, Yang S, Babb JS et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol 2004;25:746–755PubMedGoogle Scholar
  15. 15.
    Nutt SH, Patchell RA. Intracranial hemorrhage associated with primary and secondary tumors. Neurosurg Clin 1992;3:591–599.Google Scholar
  16. 16.
    Davis PC, Hudgins PA, Peterman SB et al. Diagnosis of cerebral metastasis: double-dose delayed CT vs. contrast-enhanced MR imaging. Am J Neuroradiol 1991;12:293–300.PubMedGoogle Scholar
  17. 17.
    Schellinger PD, Meinck HM, Thron A. Diagnostic accuracy of MRI compared to CC in patients with brain metastases. Journal of Neuro-Oncolgy 1999;44:275–281.CrossRefGoogle Scholar
  18. 18.
    Komiyama M, Yagura H, Baba M et al. MR imaging: possibility of tissue characterization of brain tumors using T1 and T2 values. Am J Neuroradiol 1987;8:65–70.PubMedGoogle Scholar
  19. 19.
    Komara J, Nayini N, Bialick H et al. Brain iron delocalization and lipid peroxidation following cardiac arrest. Ann Emerg Med 1986;15:384–389.CrossRefPubMedGoogle Scholar
  20. 20.
    Partovi S, Fram EK, Karis JP. Fast Spin Echo MR Imaging. Neuroimaging Clin N Am 1999;9(3):553–576.PubMedGoogle Scholar
  21. 21.
    Stevenson VL, Gawne-Cain ML, Barker GJ et al. Imaging of the spinal cord and brain in multiple sclerosis: a comparative study between fast flair and fast pin echo. J Neurol 1997;244:119–124.CrossRefPubMedGoogle Scholar
  22. 22.
    Atlas SW, Thulborn KR. Intracranial hemorrhage. In: Atlas SW, editor. Magnetic Resonance Imaging of the Brain and Spine, 3rd edition. Philadelphia, Lippincott, Williams and Wilkins, 2002:773–832.Google Scholar
  23. 23.
    Schaefer PW, Copen WA, Lev M et al. Diffusion-weighted imaging in acute stroke. Neuroimaging Clin N Am 2005;15(3):503–530.CrossRefPubMedGoogle Scholar
  24. 24.
    Rowley HA, Grant PE, Roberts TPL. Diffusion MR imaging: Theory and applications. Neuroimaging Clin N Am 1999;9(2):343–362.PubMedGoogle Scholar
  25. 25.
    Gupta RK, Sinha U, Cloughesy TF et al. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med 1999;41(1):2–7CrossRefPubMedGoogle Scholar
  26. 26.
    Camacho DL, Smith JK, Castillo M. Differentiation of toxoplasmosis and lymphoma in AIDS patients by using apparent diffusion coefficients. Am J Neuroradiol 2003;24(4):633–637PubMedGoogle Scholar
  27. 27.
    Hayashida Y, Hirai T, Morishita et al. Diffusion-weighted imaging of metastatic brain tumors: Comparison with histologic type and tumor cellularity. Am J Neuroradiol 2006; 27:1419–25.PubMedGoogle Scholar
  28. 28.
    Price SJ, Jena R, Burnet NG et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: An image-guided biopsy study. Am J Neuroradiol 2006;27:1969–1974.PubMedGoogle Scholar
  29. 29.
    Brant-Zawadzki M, Gillan GD, Nitz WR. MP RAGE: A three-dimensional, T1-weighted, gradient-echo sequence-Initial experience in the brain. Radiol 1992;182:769–775.Google Scholar
  30. 30.
    Finelli DA, Hurst GC, Gullapalli RP et al. T1-weighted three-dimensional magnetization transfer MR of the brain: improved lesion contrast enhancement. Am J Neuroradiol 1998;19:59–64.PubMedGoogle Scholar
  31. 31.
    Knauth M, Forsting M, Hartman M et al. MR enhancement of brain lesions: increased contrast dose compared with magnetization transfer. Am J Neuroradiol 1996;17:1853–1859PubMedGoogle Scholar
  32. 32.
    Maravilla KR, Maldjian JA, Schmalfuss IM et al. Contrast enhancement of central nervous system lesions: Multicenter intraindividual crossover comparative study of two MR contrast agents. Radiol 2006; 240(2):398–400.CrossRefGoogle Scholar
  33. 33.
    Yuh WTC, Engelken JD, Muhonen MC et al. Experience with high-dose gadolinium MR imaging in the evaluation of brain metastases. Am J Neuroradiol 1992;13:335–345.PubMedGoogle Scholar
  34. 34.
    Kuo PH, Kanal E, Abu-Alfa AK et al. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiol 2007 (Jan);[Epub ahead of print].Google Scholar
  35. 35.
    Grzesiakowska U, Tachikowska M. An assessment of the effectiveness of magnetic resonance imaging in delayed sequences after administration of Gd-DTPA contrast in the detection of metastatic lesions. Med Sci Monit 2002;8(1):21–4.Google Scholar
  36. 36.
    Yuh WTC, Tali ET, Nguyen HD et al. the effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. Am J Neuroradiol 1995;16:373–380.PubMedGoogle Scholar
  37. 37.
    Wintermark M, Sesay M, Barbier E et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol 2005;32(5):294–314.CrossRefPubMedGoogle Scholar
  38. 38.
    Aronen HJ, Pardo FS, Kennedy DN, et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 2000;6(6): 2189–2200.PubMedGoogle Scholar
  39. 39.
    Uematsu H, Maeda M, Itoh H. Peritumoral brain edema in intracranial meningiomas evaluated by dynamic perfusion-weighted MR imaging: a preliminary study. Eur Radiol 2003;13(4):758–762.PubMedGoogle Scholar
  40. 40.
    Sugahara T, Korogi Y, Tomiguchi S et al. Post-therapeutic intra-axial brain tumor: the value of perfusion sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tumor. Am J Neuroradiol 2000;21(5):901–909.PubMedGoogle Scholar
  41. 41.
    Sakaie KE, Shin W, Curtin KR et al. Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 2005;21(5):512–519.CrossRefPubMedGoogle Scholar
  42. 42.
    Shin W, Cashen TA, Horowitz SW et al. Quantitative CBV measurement form static T1 changes in tissue and correction for intravascular water exchange. Magn Reson Med 2006;56(1):138–145.CrossRefPubMedGoogle Scholar
  43. 43.
    Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiol 2002; 222(3):715–721.CrossRefGoogle Scholar
  44. 44.
    Cha S, Knopp EA, Johnson G et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. Am J Neuroradiol 2000;21(5):881–890.PubMedGoogle Scholar
  45. 45.
    Al-Okaili RN, Krejza J, Wang S et al. Advanced MR imaging techniques in the diagnosis of intra-axial brain tumors in adults. Radiographics 2006;26(S1):73–89.Google Scholar
  46. 46.
    Schillaci Orazio, Filippi L, Manni C et al. Single-Photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med 2007;37:34–47.CrossRefPubMedGoogle Scholar
  47. 47.
    Kashitani N, Makihara S, Maeda T et al. Thallium-201-chloride and technetium-99m-MIBI SPECT of primary and metastatic lung carcinoma. Oncol Rep 1999;6(1):127–133.PubMedGoogle Scholar
  48. 48.
    Datta NR, Pasricha R, Gambhir S et al. Comparative evaluation of Tl-201 SPECT and CT in the follow-up of irradiated brain tumors. Int J Clin Oncol 2004;9:51–58.CrossRefPubMedGoogle Scholar
  49. 49.
    Lorberboym M, Estok L, Machac J et al. Rapid differential diagnosis of cerebral toxoplasmosis and primary central nervous system lymphoma by thallium-201 SPECT. J Nucl Med 1996;37(7):1150–1154.PubMedGoogle Scholar
  50. 50.
    O’Tuama LA, Packard AB, Treves ST: SPECT imaging of pediatric brain tumor with hexakis (methoxyisobutylisonitrile) technetium (I). J Nucl Med 1990;31:2040–2041.PubMedGoogle Scholar
  51. 51.
    O’Tuama LA, Treves ST, Larar JN et al. Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors. A within subject comparison. J Nucl Med 1993;34:1045–1051.PubMedGoogle Scholar
  52. 52.
    Yamamoto Y, Nishiyama Y, Toyama Y et al. 99mTc-MIBI and 201Th SPET in the detection of recurrent brain tumours after radiation therapy. Nucl Med Commun 2002;23:1183–1190.CrossRefPubMedGoogle Scholar
  53. 53.
    Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 2003;33(2):148–162.CrossRefPubMedGoogle Scholar
  54. 54.
    Hustinx R, Alavi A. SPECT and PET imaging of brain tumors. Neuroimaging Clin N Am 1999;9(4):751–766.PubMedGoogle Scholar
  55. 55.
    Posther KE, McCall LM, Harpole DH et al. Yield of Brain 18F-FDG PET in evaluating patients with potentially operable non-small cell lung cancer. J Nucl Med 2006;47(10):1607–1611PubMedGoogle Scholar
  56. 56.
    Rohren EM, Provenzale JM, Barboriak DP et al. Screening for cerebral metastases with FDG PET in patients undergoing whole-body staging of non-central nervous system malignancy. Radiology 2003;226: 181–187.CrossRefPubMedGoogle Scholar
  57. 57.
    Wilkinson ID, Jellineck DA, Levy D et al. Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery 2006;58:640–646.CrossRefPubMedGoogle Scholar
  58. 58.
    Bastin ME, Carpenter TK, Armitage PA. Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. Am J Neuroradiol 2006;27:402–408.PubMedGoogle Scholar
  59. 59.
    Delattre JY, Krol G, Thaler HT et al. Distribution of brain metastases. Arch Neurol 1988;45:741–744.PubMedGoogle Scholar
  60. 60.
    Deangelis LM. Management of brain metastases. Cancer Invest 1994;12: 156–165.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Matthew T. Walker
    • 1
  • Vipul Kapoor
    • 2
  1. 1.Section Chief of Neuroradiology Feinberg School of MedicineChicagoUSA
  2. 2.Department of RadiologyFeinberg School of MedicineChicagoUSA

Personalised recommendations