Lymphatic Markers, Tumour Lymphangiogenesis and Lymph Node Metastasis

  • David G. Jackson
Part of the Cancer Treatment and Research book series (CTAR, volume 135)

Many of the most common human cancers disseminate from the site of primary tumour growth to distant tissues via the vessels and organs of the lymphatic system. In melanomas, cancers of the breast and colorectum, and in head and neck squamous cell carcinomas, early metastasis to lymph nodes is a common clinical finding, and one that is associated with poorer prognosis.Treatments to specifically block dissemination through the lymphatic network could in theory provide an independent therapy for some cancers, or at least an adjunct to existing chemotherapy. However, such a rational basis for the design of treatments is currently hindered by our poor understanding of the fundamental biology of lymphatics, and in particular lymphatic endothelial cell (LEC) biology.


Vascular Endothelial Growth Factor Lymphatic Vessel Lymphatic Endothelial Cell Lymphatic Vessel Density Lymphatic Endothelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sabin, FR, (1902) The lymphatic system in human embryos, with consideration of the morphology of the system as a whole. Am. J. Pathol. 1: 367–389.Google Scholar
  2. 2.
    Oliver, G, (2004) Lymphatic vasculature development. Nat. Rev. Immunol. 4: 35–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Jackson, DG, (2001) New molecular markers for the study of tumour lymphangiogenesis. Anticancer Res. 21: 4279–4283.PubMedGoogle Scholar
  4. 4.
    Sallusto, F, Schaerli, P, Loetscher, P, Schaniel, C, Lenig, D, Mackay, CR, Qin, S, and Lanzavecchia, A, (1998) Rapid and co-ordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28: 2760–2769.PubMedCrossRefGoogle Scholar
  5. 5.
    Yuan, L, Moyon, D, Pardanaud, L, Breant, C, Karkkainen, MJ, Alitalo, K, and Eichmann, A, (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 129: 4797–4806.PubMedGoogle Scholar
  6. 6.
    Joukov, V, Pajusola, K, Kaipainen, A, Chilov, D, Lahtinen, I, Kukk, E, Saksela, O, Kalkkinen, N, and Alitalo, K, (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO. J. 15: 290–298.PubMedGoogle Scholar
  7. 7.
    Makinen, T, Veikkola, T, Mustjoki, S, Karpanen, T, Catimel, B, Nice, EC, Wise, L, Mercer, A, Kowalski, H, Kerjaschki, D, Stacker, SA, Achen, MG, and Alitalo, K, (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO. J. 20: 4726–4773.CrossRefGoogle Scholar
  8. 8.
    Kukk, E, Lymboussaki, A, Taira, S, Kaipainen, A, Jeltsch, M, Joukov, V, and Alitalo, K, (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 122: 3829–3837.PubMedGoogle Scholar
  9. 9.
    Karkkainen, MJ, Haiko, P, Sainio, K, Partanen, J, Taipale, J, Petrova, TV, Jeltsch, M, Jackson, DG, Talikka, M, Rauvala, H, Betsholtz, C, and Alitalo, K, (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 5: 74–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaipainen, A, Korhonen, J, Mustonen, T, van Hinsbergh, VW, Fang, GH, Dumont, D, Breitman, M, and Alitalo, K, (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 92: 3566–3570.PubMedCrossRefGoogle Scholar
  11. 11.
    Dumont, DJ, Jussila, L, Taipale, J, Lymboussaki, A, Mustonen, T, Pajusola, K, Breitman, M, and Alitalo, K, (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 282: 946–949.PubMedCrossRefGoogle Scholar
  12. 12.
    Lymboussaki, A, Partanen, TA, Olofsson, B, Thomas-Crusells, J, Fletcher, CDM, de Waal, RMW, Kaipainen, A, and Alitalo, K, (1998) Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am. J. Pathol. 153: 395–403.PubMedGoogle Scholar
  13. 13.
    Jeltsch, M, Kaipanen, A, Joukov, V, Meng, X, Lakso, M, Rauvala, H, Swartz, M, Fukumura, D, Jain, RK, and Alitalo, K, (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 276: 1423–1425.PubMedCrossRefGoogle Scholar
  14. 14.
    Kubo, H, Fujiwara, T, Jussila, L, Hashi, H, Ogawa, M, Shimizu, K, Awane, M, Sakai, Y, Takabayashi, A, Alitalo, K, Yamaoka, Y, and Nishikawa, SI, (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood. 96: 546–553.PubMedGoogle Scholar
  15. 15.
    Veikkola, T, Jussila, L, Makinen, T, Karpanen, T, Jeltsch, M, Petrova, TV, Kubo, H, Thurston, G, McDonald, DM, Achen, MG, Stacker, SA, and Alitalo, K, (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO. J. 20: 1223–1231.PubMedCrossRefGoogle Scholar
  16. 16.
    He, Y, Kozaki, K, Karpanen, T, Koshikawa, K, Yla-Herttuala, S, Takahashi, T, and Alitalo, K, (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J. Natl. Cancer Inst. 94: 819–825.PubMedGoogle Scholar
  17. 17.
    He, Y, Karpanen, T, and Alitalo, K, (2004) Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta. 1654: 3–12.PubMedGoogle Scholar
  18. 18.
    Valtola, R, Salven, P, Heikkila, P, Taipale, J, Joensuu, H, Rehn, M, Pihlajaniemi, T, Weich, H, deWaal, R, and Alitalo, K, (1999) VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154: 1381–1390.PubMedGoogle Scholar
  19. 19.
    Partanen, TA, Alitalo, K, and Miettinen, M, (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer. 86: 2406–2412.PubMedCrossRefGoogle Scholar
  20. 20.
    Saharinen, P, Tammela, T, Karkkainen, MJ, and Alitalo, K, (2004) Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 25: 387–395.PubMedCrossRefGoogle Scholar
  21. 21.
    Wigle, JT and Oliver, G, (1999) Prox-1 function is required for the development of the murine lymphatic system. Cell. 98: 769–778.PubMedCrossRefGoogle Scholar
  22. 22.
    Hong, YK, Harvey, N, Noh, YH, Schacht, V, Hirakawa, S, Detmar, M, and Oliver, G, (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 225: 351–357.PubMedCrossRefGoogle Scholar
  23. 23.
    Wigle, JT, Harvey, N, Detmar, M, Lagutina, I, Grosveld, G, Gunn, MD, Jackson, DG, and Oliver, G, (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. Embo J. 21: 1505–1513.PubMedCrossRefGoogle Scholar
  24. 24.
    Agarwal, B, Saxena, R, Morimiya, A, Mehrotra, S, and Badve, S, (2005) Lymphangiogenesis does not occur in breast cancer. Am J Surg Pathol. 29: 1449–1455.PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson, LA, Clasper, S, Holt, A, Lalor, P, Baban, D, and Jackson, DG, (2006) An inflammation-induced mechanism for leukocyte transmigration of lymphatic endothelium. J. Exp. Med. 203: 2763–2777.PubMedCrossRefGoogle Scholar
  26. 26.
    Stacker, SA, Achen, MG, Jussila, L, Baldwin, ME, and Alitalo, K, (2002) Lymphangiogenesis and cancer metastasis. Nat. Rev Cancer. 2: 573–583.PubMedCrossRefGoogle Scholar
  27. 27.
    Dobbs, LG, Williams, MC, and Gonzalez, R, (1988) Monoclonal antibodies specific to apical surfaces of rat alveolar type I cells bind to surfaces of cultured, but not freshly isolated, type II cells. Biochim. Biophys. Acta. 970: 146–156.PubMedCrossRefGoogle Scholar
  28. 28.
    Gandarillas, A, Scholl, FG, Benito, N, Gamallo, C, and Quintanilla, M, (1997) Induction of PA2.26, a cell-surface antigen expressed by active fibroblasts, in mouse epidermal keratinocytes during carcinogenesis. Mol. Carcinog. 20: 10–18.PubMedCrossRefGoogle Scholar
  29. 29.
    Wetterwald, A, Hoffstetter, W, Cecchini, MG, Lanske, B, Wagner, C, Fleisch, H, and Atkinson, M, (1996) Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone. 18: 125–132.PubMedCrossRefGoogle Scholar
  30. 30.
    Breiteneder-Geleff, S, Matsui, K, Soleiman, A, Meraner, P, Poczewski, H, Kalt, R, Schaffner, G, and Kerjaschki, D, (1997) Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 151: 1141–1152.PubMedGoogle Scholar
  31. 31.
    Breiteneder-Geleff, S, Soleiman, A, Horvat, R, Amann, G, Kowalski, H, and Kerjaschki, D, (1999) [Podoplanin—a specific marker for lymphatic endothelium expressed in angiosarcoma]. Verh Dtsch Ges Pathol. 83: 270–275.PubMedGoogle Scholar
  32. 32.
    Schacht, V, Ramirez, MI, Hong, YK, Hirakawa, S, Feng, D, Harvey, N, Williams, M, Dvorak, AM, Dvorak, HF, Oliver, G, and Detmar, M, (2003) T1 alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO. J. 22: 3546–3556.PubMedCrossRefGoogle Scholar
  33. 33.
    Ramirez, MI, Millien, G, Hinds, A, Cao, Y, Seldin, DC, and Williams, MC, (2003) T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev. Biol. 256: 61–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Kerjaschki, D, Regele, HM, Moosberger, I, Nagy-Bojarski, K, Watschinger, B, Soleiman, A, Birner, P, Krieger, S, Hovorka, A, Silberhumer, G, Laakkonen, P, Petrova, T, Langer, B, and Raab, I, (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol. 15: 603–612.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaneko, M, Kato, Y, Kunita, A, Fujita, N, Tsuruo, T, and Osawa, M, (2004) Functional sialylated O-glycan to platelet aggregation on Aggrus (T1alpha/Podoplanin) molecules expressed in Chinese hamster ovary cells. J Biol Chem. 279: 38838–38843.PubMedCrossRefGoogle Scholar
  36. 36.
    Wicki, A, Lehembre, F, Wick, N, Hantusch, B, Kerjaschki, D, and Christofori, G, (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 9: 261–272.PubMedCrossRefGoogle Scholar
  37. 37.
    Schacht, V, Dadras, SS, Johnson, LA, Jackson, DG, Hong, YK, and Detmar, M, (2005) Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 166: 913–921.PubMedGoogle Scholar
  38. 38.
    Nibbs, RJ, Wylie, SM, Yang, J, Landau, NR, and Graham, GJ, (1997) Cloning and characterization of a novel promiscuous human beta-chemokine receptor D6. J Biol Chem. 272: 32078–32083.PubMedCrossRefGoogle Scholar
  39. 39.
    Nibbs, RJ, Wylie, SM, Pragnell, IB, and Graham, GJ, (1997) Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1alpha receptors, CCR-1, CCR-3, and CCR-5. J Biol Chem. 272: 12495–12504.PubMedCrossRefGoogle Scholar
  40. 40.
    Fra, AM, Locati, M, Otero, K, Sironi, M, Signorelli, P, Massardi, ML, Gobbi, M, Vecchi, A, Sozzani, S, and Mantovani, A, (2003) Cutting Edge: scavenging of inflammatory CC chemokines by the prmiscuous putatively silent chemokine receptor D6. J. Immunol. 170: 2279–2282.PubMedGoogle Scholar
  41. 41.
    Weber, M, Blair, E, Simpson, CV, O’Hara, M, Blackburn, PE, Rot, A, Graham, GJ, and Nibbs, RJ, (2004) The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol Biol Cell. 15: 2492–2508.PubMedCrossRefGoogle Scholar
  42. 42.
    Jamieson, T, Cook, DN, Nibbs, RJ, Rot, A, Nixon, C, McLean, P, Alcami, A, Lira, SA, Wiekowski, M, and Graham, GJ, (2005) The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol. 6: 403–411.PubMedCrossRefGoogle Scholar
  43. 43.
    Martinez de la Torre, Y, Locati, M, Buracchi, C, Dupor, J, Cook, DN, Bonecchi, R, Nebuloni, M, Rukavina, D, Vago, L, Vecchi, A, Lira, SA, and Mantovani, A, (2005) Increased inflammation in mice deficient for the chemokine decoy receptor D6. Eur. J. Immunol. 35: 1342–1346.PubMedCrossRefGoogle Scholar
  44. 44.
    Nibbs, RJB, (2001) The b-chemokine receptorD6 is expressed by lymphatic endotheliumand a subset of vascular tumours. Am. J. Pathol. 158: 867–877.PubMedGoogle Scholar
  45. 45.
    Banerji, S, Ni, J, Wang, SX, Clasper, S, Su, J, Tammi, R, Jones, M, and Jackson, DG, (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 144: 789–801.PubMedCrossRefGoogle Scholar
  46. 46.
    Maruyama, K, Ii, M, Cursiefen, C, Jackson, DG, Keino, H, Tomita, M, Van Rooijen, N, Takenaka, H, D’Amore, PA, Stein-Streilein, J, Losordo, DW, and Streilein, JW, (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest. 115: 2363–2372.PubMedCrossRefGoogle Scholar
  47. 47.
    Prevo, R, Banerji, S, Ferguson, DJ, Clasper, S, and Jackson, DG, (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem. 276: 19420–19430.PubMedCrossRefGoogle Scholar
  48. 48.
    Carreira, CM, Nasser, SM, di Tomaso, E, Padera, TP, Boucher, Y, Tomarev, SI, and Jain, RK, (2001) LYVE-1 is not restricted to the lymph vessels : expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 61: 8079–8084.Google Scholar
  49. 49.
    Jackson, DG, (2003) The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med. 13: 1–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Jackson, DG, (2004) The lymphatic endothelial hyaluronan receptor LYVE-1. Glycoforum.
  51. 51.
    Jackson, DG, (2004) Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS. 112: 526–538.PubMedCrossRefGoogle Scholar
  52. 52.
    Gale, NW, Prevo, R, Espinosa-Fematt, J, Ferguson, DJ, Dominguez, MG, Yancopoulos, GD, Thurston, G, and Jackson, DG, (2007) Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol. Cell. Biol. 27: 595–604.PubMedCrossRefGoogle Scholar
  53. 53.
    Stessels, F, Van den Eynden, G, Van der Auwera, I, Salgado, R, Van den Heuvel, E, Harris, AL, Jackson, DG, Colpaert, CG, van Marck, EA, Dirix, LY, and Vermeulen, PB, (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer. 90: 1429–1436.PubMedCrossRefGoogle Scholar
  54. 54.
    Van der Auwera, I, Van den Eynden, GG, Colpaert, CG, Van Laere, SJ, van Dam, P, Van Marck, EA, Dirix, LY, and Vermeulen, PB, (2005) Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res. 11: 7637–7642.PubMedCrossRefGoogle Scholar
  55. 55.
    Van den Eynden, GG, Van der Auwera, I, Van Laere, SJ, Huygelen, V, VColpaert, CG, Van Dam, P, Dirix, LY, Vermeulen, PB, and Van Marck, EA, (2006) Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer. Br. J. Cancer. 95: 1362–1366.PubMedCrossRefGoogle Scholar
  56. 56.
    Rubbia-Brandt, L, Terris, B, Giostra, E, Dousset, B, Morel, P, and Pepper, MS, (2004) Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res. 10: 6919–6928.PubMedCrossRefGoogle Scholar
  57. 57.
    Van der Auwera, I, Cao, Y, Tille, JC, Pepper, MS, Jackson, DG, Fox, SB, Harris, AL, Dirix, LY, and Vermeulen, PB, (2006) First International consensus on the methodology of lymphangiogenesis quantification in solid human tumours. Br. J. Cancer. 1–15.Google Scholar
  58. 58.
    Skobe, M, Hawighorst, T, Jackson, DG, Prevo, R, Janes, L, Velasco, P, Riccardi, L, Alitalo, K, Claffey, K, and Detmar, M, (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 7: 192–198.PubMedCrossRefGoogle Scholar
  59. 59.
    Stacker, SA, Caesar, C, Baldwin, ME, Thornton, GE, Williams, RA, Prevo, R, Jackson, DG, Nishikawa, S, Kubo, H, and Achen, MG, (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 7: 186–191.PubMedCrossRefGoogle Scholar
  60. 60.
    Mandriota, SJ, Jussila, L, Jeltsch, M, Compagni, A, Baetens, D, Prevo, R, Banerji, S, Huarte, J, Montesano, R, Jackson, DG, Orci, L, Alitalo, K, Christofori, G, and Pepper, MS, (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. Embo J. 20: 672–682.PubMedCrossRefGoogle Scholar
  61. 61.
    Beasley, NJ, Prevo, R, Banerji, S, Leek, RD, Moore, J, van Trappen, P, Cox, G, Harris, AL, and Jackson, DG, (2002) Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res. 62: 1315–1320.PubMedGoogle Scholar
  62. 62.
    Dadras, SS, Paul, T, Bertoncini, J, Brown, LF, Muzikansky, A, Jackson, DG, Ellwanger, U, Garbe, C, Mihm, MC, and Detmar, M, (2003) Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol. 162: 1951–1960.PubMedGoogle Scholar
  63. 63.
    Von Marschall, Z, Scholz, A, Stacker, S, Achen, M, Jackson, DG, Alves, F, Schirner, M, Haberey, M, Thierauch, K-H, Wiedenmann, B, and Rosewicz, S, (2005) Vascular endothelial growth factor-D induces lymphangiogenesis and lymphatic metastasis in human pancreatic cancer. 27: 669–679.Google Scholar
  64. 64.
    Maula, SM, Luukkaa, M, Grenman, R, Jackson, D, Jalkanen, S, and Ristamaki, R, (2003) Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res. 63: 1920–1926.PubMedGoogle Scholar
  65. 65.
    Hall, FT, Freeman, JL, Asa, SL, Jackson, DG, and Beasley, NJ, (2003) Intratumoral lymphatics and lymph node metastases in papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg. 129: 716–719.PubMedCrossRefGoogle Scholar
  66. 66.
    Shields, JD, Borsetti, M, Rigby, H, Harper, SJ, Mortimer, PS, Levick, JR, Orlando, A, and Bates, DO, (2004) Lymphatic density and metastatic spread in human malignant melanoma. Br J Cancer. 90: 693–700.PubMedCrossRefGoogle Scholar
  67. 67.
    Straume, O, Jackson, DG, and Akslen, LA, (2003) Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clin Cancer Res. 9: 250–256.PubMedGoogle Scholar
  68. 68.
    Audet, N, Beaasley, NJ, MacMillan, C, Jackson, DG, Gullane, PJ, and Kamel-Reid, S, (2005) Lymphatic vessel density, nodal metastases, and prognosis in patients with head and neck cancer. Arch. Otolaryngol. Head Neck Surg. 131: 1065–1070.PubMedCrossRefGoogle Scholar
  69. 69.
    Kyzas, PA, Geleff, S, Batistatou, A, Agnantis, NJ, and Stefanou, D, (2005) Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. J Pathol. 206: 170–177.PubMedCrossRefGoogle Scholar
  70. 70.
    Bono, P, Wasenius, V, Lundin, J, Jackson, DG, and Joensuu, H, (2004) High peritumoral LYVE-1 positive lymphatic vessel numbers are associated with axillary lymph node metastases and poor outcome in early breast cancer. Clin Cancer Res. 10: 7144–7149.PubMedCrossRefGoogle Scholar
  71. 71.
    Williams, CS, Leek, RD, Robson, AM, Banerji, S, Prevo, R, Harris, AL, and Jackson, DG, (2003) Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol. 200: 195–206.PubMedCrossRefGoogle Scholar
  72. 72.
    Van Trappen, PO, Steele, D, Lowe, DG, Baithun, S, Beasley, N, Thiele, W, Weich, H, Krishnan, J, Shepherd, JH, Pepper, MS, Jackson, DG, Sleeman, JP, and Jacobs, IJ, (2003) Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol. 201: 544–554.PubMedCrossRefGoogle Scholar
  73. 73.
    Trojan, L, Michel, MS, Rensch, F, Jackson, DG, Alken, P, and Grobholz, R, (2004) Lymph and blood vessel architecture in benign and malignant prostatic tissue: lack of lymphangiogenesis in prostate carcinoma assessed with novel lymphatic marker lymphatic vessel endothelial hyaluronan receptor (LYVE-1). J Urol. 172: 103–107.PubMedCrossRefGoogle Scholar
  74. 74.
    Trojan, L, Rensch, F, Voss, M, Grobholz, R, Weiss, C, Jackson, DG, Alken, P, and Michel, MS, (2006) The role of the lymphatic system and its specific growth factor, vascular endothelial growth factor C, for lymphogenic metastasis in prostate cancer. BJU Int. 98: 903–906.PubMedCrossRefGoogle Scholar
  75. 75.
    Schoppmann, SF, Birner, P, Studer, P, and Breiteneder-Geleff, S, (2001) Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer. Anticancer Res. 21: 2351–2355.PubMedGoogle Scholar
  76. 76.
    Liang, P, Hong, JW, Ubukata, H, Liu, HR, Watanabe, Y, Katano, M, Motohashi, G, Kasuga, T, Nakada, I, and Tabuchi, T, (2006) Increased density and diameter of lymphatic microvessels correlate with lymph node metastasis in early stage invasive colorectal carcinoma. Virchows Arch. 448: 570–575.PubMedCrossRefGoogle Scholar
  77. 77.
    Omachi, T, Kawai, Y, Mizuno, R, Nomiyama, T, Miyagawa, S, Ohhashi, T, and Nakayama, J, (2006) Immunohistochemical demonstration of proliferating lymphatic vessels in colorectal carcinoma and its clinicopathological significance. Cancer Lett. 246: 167–172.PubMedCrossRefGoogle Scholar
  78. 78.
    Birner, P, Schindl, M, Obermair, A, Breitenecker, G, Kowalski, H, and Oberhuber, G, (2001) Lymphatic microvessel density as a novel prognostic factor in early-stage invasive cervical cancer. Int J Cancer. 95: 29–33.PubMedCrossRefGoogle Scholar
  79. 79.
    Sacchi, G, Weber, E, Agliano, M, Lorenzoni, P, Rossi, A, Caruso, AM, Vernillo, R, Gerli, R, and Lorenzi, M, (2003) Lymphatic vessels in colorectal cancer and their relation with inflammatory infiltrate. Dis Colon Rectum. 46: 40–47.PubMedCrossRefGoogle Scholar
  80. 80.
    Matsumoto, K, Nakayama, Y, Inoue, Y, Minagawa, N, Katsuki, T, Shibao, K, Tsurudome, Y, Hirata, K, Nagata, N, and Itoh, H, (2007) Lymphatic microvessel density is an independent prognostic factor in colorectal cancer. Dis Colon Rectum. 50: 308–314.PubMedCrossRefGoogle Scholar
  81. 81.
    Saad, RS, Kordunsky, L, Liu, YL, Denning, KL, Kandil, HA, and Silverman, JF, (2006) Lymphatic microvessel density as prognostic marker in colorectal cancer. Mod. Pathol. 19: 1317–1323.PubMedCrossRefGoogle Scholar
  82. 82.
    Jain, RK and Fenton, BT, (2002) Intratumoral lymphatic vessels: a case of mistaken identity or malfunction ? J. Natl. Cancer Inst. 94: 417–421.PubMedGoogle Scholar
  83. 83.
    Leu, AJ, Berk, DA, Lymboussaki, A, Alitalo, K, and Jain, RK, (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60: 4324–4327.PubMedGoogle Scholar
  84. 84.
    Padera, TP, Kadambi, A, Di Tomaso, E, Mouta Carreira, C, Brown, EB, Bpucher, Y, Choi, NC, Mathisen, D, Wain, J, Mark, EJ, Munn, LL, and Jain, RK, (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886.PubMedCrossRefGoogle Scholar
  85. 85.
    Padera, T. P., Stoll, BR, Tooredman, JB, Capen, D, Di Tomaso, E, and Jain, RK, (2004) Pathology: Cancer cells compress intratumour vessels. Nature. 427: 695.PubMedCrossRefGoogle Scholar
  86. 86.
    Hoshida, T, Isaka, N, Hagendoorn, J, Di Tomaso, E, Chen, Y-L, Pytowski, B, Fukumura, D, Padera, TP, and Jain, RK, (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-c increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 66: 8065–8075.PubMedCrossRefGoogle Scholar
  87. 87.
    Shields, J, Emmett, MS, Dunn, DBA, Joory, KD, Sage, LM, Rigby, H, Mortimer, PS, Orlando, A, Levick, JR, and Bates, DO, (2006) Chemokine - mediated migration of melanoma cells towards lymphatics - a mechanism contributing to metastasis. Oncogene. epubl. 27 November 2006.Google Scholar
  88. 88.
    Qian, CN, Berghuis, B, Tsarfaty, G, Bruch, M, Kort, EJ, Ditlev, J, Tsarfaty, I, Hudson, E, Jackson, DG, Petillo, D, Chen, J, Resau, JH, and Teh, BT, (2006) Preparing the soil: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 66: 10365–10376.PubMedCrossRefGoogle Scholar
  89. 89.
    Hirakawa, S, Kodama, M, Kunstfeld, R, Kajiya, K, Brown, LF, and Detmar, M, (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201: 1089–1099.PubMedCrossRefGoogle Scholar
  90. 90.
    Cao, R, Bjorndahl, MA, Religa, P, Clasper, S, Garvin, S, Galter, D, Meister, B, Ikomi, F, Tritsaris, K, Dissing, S, Ohhashi, T, Jackson, DG, and Cao, Y, (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell. 6: 333–345.PubMedCrossRefGoogle Scholar
  91. 91.
    Kajiya, K, Hirakawa, S, Ma, B, Drinnenberg, I, and Detmar, M, (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO. J. 24: 2885–2895.PubMedCrossRefGoogle Scholar
  92. 92.
    Bjorndahl, M, Cao, R, Nissen, LJ, Clasper, S, Johnson, LA, Xue, Y, Zhou, Z, Jackson, D, Hansen, AJ, and Cao, Y, (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci U S A. 102: 15593–15598.PubMedCrossRefGoogle Scholar
  93. 93.
    Tammela, T, Petrova, TV, and Alitalo, K, (2005) Molecular lymphangiogenesis: new players. Trends Cell Biol. 15: 434–441.PubMedCrossRefGoogle Scholar
  94. 94.
    St Croix, B, Rago, C, Velculescu, V, Traverso, G, Romans, KE, Montgomery, E, Lal, A, Riggins, GJ, Lengauer, C, Vogelstein, B, and Kinzler, KW, (2000) Genes expressed in human tumor endothelium. Science. 289: 1197–1202.PubMedCrossRefGoogle Scholar
  95. 95.
    Carson-Walter, EB, Watkins, DN, Nanda, A, Vogelstein, B, Kinzler, K, and St Croix, B, (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 61: 6649–6655.PubMedGoogle Scholar
  96. 96.
    Nanda, A and St Croix, B, (2004) Tumor endothelial markers: new targets for cancer therapy. Curr Opin Oncol. 16: 44–49.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang, L, Giraudo, E, Hoffman, JA, Hanahan, D, and Ruoslahti, E, (2006) Lymphatic zip codes in premalignant lesions and tumors. Cancer Res. 66: 5696–5706.PubMedCrossRefGoogle Scholar
  98. 98.
    Yong, C, Bridenbaugh, EA, Zawieja, D, and Swartz, MA, (2005) Microarray analysis of VEGF-C responsive genes in human lymphatic endothelial cells. Lymphatic Res. Biol. 3: 183–207.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • David G. Jackson
    • 1
  1. 1.MRC Human Immunology UnitUniversity of OxfordHeadingtonUK

Personalised recommendations