Advertisement

Public Key Cryptography

  • Christiane Rousseau
  • Yvan Saint-Aubin
Chapter
Part of the Springer Undergraduate Texts in Mathematics and Technology book series (SUMAT)

Keywords

Prime Number Quantum Computer Quadratic Residue Prime Integer Prime Number Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in p.Annals of Mathematics, 160:781–793, 2004. (See also 2.)MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    F. Bornemann. PRIMES is in p: A breakthrough for everyman.Notices of the American Mathematical Society, 50(5):545–552, 2003.MATHMathSciNetGoogle Scholar
  3. [3]
    J. Buchmann.Introduction to Cryptography. Springer, New York, 2001.MATHGoogle Scholar
  4. [4]
    J.-P. Delahaye. La cryptographie RSA 20 ans après.Pour la Science, 2000.Google Scholar
  5. [5]
    E. Knill, R. Laflamme, H. Barnum, D. Dalvit, J. Dziarmaga, J. Gubernatis, L. Gurvits, G. Ortiz, L. Viola, and W.H. Zurek. From factoring to phase estimation: A discussion of Shor’s algorithm.Los Alamos Science, 27:38–45, 2002.Google Scholar
  6. [6]
    E. Knill, R. Laflamme, H. Barnum, D. Dalvit, J. Dziarmaga, J. Gubernatis, L. Gurvits, G. Ortiz, L. Viola, and W.H. Zurek. Quantum information processing: A hands-on primer.Los Alamos Science, 27:2–37, 2002.Google Scholar
  7. [7]
    C. Pomerance. A tale of two sieves.Notices of the American Mathematical Society, 43(12):1473–1485, 1996.MATHMathSciNetGoogle Scholar
  8. [8]
    R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public key cryptosystems.Communications of the ACM, 21(2):120–126, 1978.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.SIAM Journal of Computation, 26:1484–1509, 1997.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Weil.Number Theory for Beginners. Springer, New York, 1979.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York 2008

Authors and Affiliations

  1. 1.Département de mathématiques et de statistiqueUniversité de MontréalCanada

Personalised recommendations