Advertisement

Gastrointestinal Stromal Tumors of Gastric Origin

  • Chandrajit P. Raut
  • Jason L. Hornick
  • Monica M. Bertagnolli

Introduction

Gastrointestinal stromal tumors (GISTs) are rare neoplasms. Although they account for only 0.1%–3% of all gastrointestinal (GI) malignancies (Crosby et al. 2001; DeMatteo et al. 2000; Lewis and Brennan 1996; Nishida and Hirota 2000), they represent 80% of GI mesenchymal tumors (Miettinen and Lasota 2001). GISTs may arise from anywhere along the GI tract and exhibit a broad spectrum of clinical behavior. Many are asymptomatic, discovered incidentally during imaging, endoscopy, or laparotomy for unrelated reasons. GISTs exhibit a broad spectrum of clinical activity. Some remain stable for years, whereas others progress rapidly (DeMatteo et al. 2000; Fletcher et al. 2002). Metastases may be identified in 15%–50% of GISTs at the time of diagnosis (Bauer et al. 2003; Roberts and Eisenberg 2002).

Histologic and Molecular Classification

Until recently, the diagnostic criteria for GISTs were poorly defined because of their variable natural history, heterogeneous immunophenotype,...

Keywords

National Comprehensive Cancer Network National Comprehensive Cancer Network Imatinib Mesylate PDGFRA Mutation Sunitinib Malate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agaimy, A., Wunsch, P.H., et al. (2007). Minute gastric sclerosing stromal tumors (GIST tumor-lets) are common in adults and frequently show c-KIT mutations. Am J Surg Pathol. 31(1):113–20.PubMedGoogle Scholar
  2. Al-Bozom, I.A. (2001). p53 expression in gastrointestinal stromal tumors. Pathol Int. 51(7):519–23.PubMedGoogle Scholar
  3. Amieux, P.S. (2004). Getting the GIST of the Carney Triad: growth factors, rare tumors, and cellular respiration. Pediatr Dev Pathol. 7(4):306–8.PubMedGoogle Scholar
  4. Andtbacka, R.H., Ng, C.S., et al. (2007). Surgical resection of gastrointestinal stromal tumors after treatment with imatinib. Ann Surg Oncol. 14(1):14–24.PubMedGoogle Scholar
  5. Bauer, S., Corless, C.L., et al. (2003). Response to imatinib mesylate of a gastrointestinal stromal tumor with very low expression of KIT. Cancer Chemother Pharmacol. 51(3):261–5.PubMedGoogle Scholar
  6. Bauer, S., Hartmann, J.T., et al. (2005). Resection of residual disease in patients with metastatic gastrointestinal stromal tumors responding to treatment with imatinib. Int J Cancer. 117(2):316–25.PubMedGoogle Scholar
  7. Beghini, A., Tibiletti, M.G., et al. (2001). Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer. 92(3):657–62.PubMedGoogle Scholar
  8. Besana-Ciani, I., Boni, L., et al. (2003). Outcome and long term results of surgical resection for gastrointestinal stromal tumors (GIST). Scand J Surg 92(3):195–9.PubMedGoogle Scholar
  9. Blanke, C.D. (2003). Therapeutic options for gastrointestinal stromal tumors. Educational book for the 2003 annual meeting of the American Society of Clinical Oncology. 266–72.Google Scholar
  10. Blay, J.Y., Bonvalot, S., et al. (2005). Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO. Ann Oncol. 16(4):566–78.PubMedGoogle Scholar
  11. Bonvalot, S., Eldweny, H., et al. (2006). Impact of surgery on advanced gastrointestinal stromal tumors (GIST) in the imatinib era. Ann Surg Oncol. 13(12):1596–603.PubMedGoogle Scholar
  12. Bumming, P., Andersson, J., et al. (2003). Neoadjuvant, adjuvant and palliative treatment of gastrointestinal stromal tumours (GIST) with imatinib: a centre-based study of 17 patients. Br J Cancer. 89:460–4.Google Scholar
  13. Carney, J.A. (1999). Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney Triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc. 74(6):543–52.PubMedGoogle Scholar
  14. Carney, J.A., and Stratakis, C.A. (2002). Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet. 108(2):132–9.PubMedGoogle Scholar
  15. Choi, H., Charnsangavej, C., et al. (2007). Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 25(13):1753–9.PubMedGoogle Scholar
  16. Chompret, A., Kannengiesser, C., et al. (2004). PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology. 126(1):318–21.PubMedGoogle Scholar
  17. Corless, C.L., Fletcher, J.A., et al. (2004). Biology of gastrointestinal stromal tumors. J Clin Oncol. 22(18):3813–25.PubMedGoogle Scholar
  18. Corless, C.L., Schroeder, A., et al. (2005). PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol. 23(23):5357–64.PubMedGoogle Scholar
  19. Crosby, J.A., Catton, C.N., et al. (2001). Malignant gastrointestinal stromal tumors of the small intestine: a review of 50 cases from a prospective database. Ann Surg Oncol. 8(1):50–9.PubMedGoogle Scholar
  20. De Giorgi, U., and Verweij, J. (2005). Imatinib and gastrointestinal stromal tumors: Where do we go from here? Mol Cancer Ther. 4(3):495–501.PubMedGoogle Scholar
  21. DeMatteo, R.P., Lewis, J.J., et al. (2000). Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 231(1):51–8.PubMedGoogle Scholar
  22. DeMatteo, R.P., Maki, R.G., et al. (2007). Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg. 245(3):347–52.PubMedGoogle Scholar
  23. DeMatteo, R., Owzar, K., et al. (2007). Adjuvant imatinib mesylate increases recurrence free survival (RFS) in patients with completely localized primary gastrointestinal stromal tumor (GIST): North American Intergroup Phase III trial ACOSOG Z9001. Proc Am Soc Clin Oncol. Abstr. 10079.Google Scholar
  24. Demetri, G.D., Benjamin, R.S., et al. (2007). NCCN task force report: optimal management of patients with gastrointestinal stromal tumor (GIST): update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw. 5(S2):S1–S32.PubMedGoogle Scholar
  25. Demetri, G.D., and Delaney, T. (2001). NCCN: Sarcoma. Cancer Control. 8(6 Suppl 2):94–101.PubMedGoogle Scholar
  26. Demetri, G.D., and Morgan, J.A. (2005). Gastrointestinal stromal tumors, leiomyomas, and leio-myosarcomas of the gastrointestinal tract. On line access.Google Scholar
  27. Demetri, G.D., van Oosterom, A.T., et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 368(9544):1329–38.PubMedGoogle Scholar
  28. Demetri, G.D., von Mehren, M., et al. (2002). Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 347(7):472–80.PubMedGoogle Scholar
  29. Dileo, P., Randhawa, R., et al. (2004). Safety and efficacy of percutaneous radio-frequency ablation (RFA) in patients with metastatic gastrointestinal stromal tumor with clonal evolution of lesions refractory to imatinib mesylate. J Clin Oncol. 22(14S):9024.Google Scholar
  30. Druker, B.J., Talpaz, M., et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 344(14):1031–7.PubMedGoogle Scholar
  31. Druker, B.J., Tamura, S., et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 2(5):561–6.PubMedGoogle Scholar
  32. Duensing, A., Medeiros, F., et al. (2004). Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 23(22):3999–4006.PubMedGoogle Scholar
  33. Edmonson, J.H., Marks, R.S., et al. (2002). Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Invest. 20(5–6):605–12.PubMedGoogle Scholar
  34. Emile, J.F., Theou, N., et al. (2004). Clinicopathologic, phenotypic, and genotypic characteristics of gastrointestinal mesenchymal tumors. Clin Gastroenterol Hepatol. 2(7):597–605.PubMedGoogle Scholar
  35. Emory, T.S., Sobin, L.H., et al. (1999). Prognosis of gastrointestinal smooth-muscle (stromal) tumors: dependence on anatomic site. Am J Surg Pathol. 23(1):82–7.PubMedGoogle Scholar
  36. Ernst, S.I., Hubbs, A.E., et al. (1998). KIT mutation portends poor prognosis in gastrointestinal stromal/smooth muscle tumors. Lab Invest. 78(12):1633–6.PubMedGoogle Scholar
  37. Fletcher, C.D., Berman, J.J., et al. (2002a). Diagnosis of gastrointestinal stromal tumors: a consensus approach. Int J Surg Pathol. 10(2):81–9.Google Scholar
  38. Fletcher, C.D., Berman, J.J., et al. (2002b). Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol. 33(5):459–65.Google Scholar
  39. Fletcher, J.A., Corless, C.L., et al. (2003). Mechanisms of resistance to imatinib mesylate (IM) in advanced gastrointestinal stromal tumor (GIST). Proc Am Soc Clin Oncol. 22:815.Google Scholar
  40. Gayed, I., Vu, T., et al. (2004). The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med. 45(1):17–21.PubMedGoogle Scholar
  41. Ghanem, N., Altehoefer, C., et al. (2003). Computed tomography in gastrointestinal stromal tumors. Eur Radiol. 13(7):1669–78.PubMedGoogle Scholar
  42. Goettsch, W.G., Bos, S.D., et al. (2005). Incidence of gastrointestinal stromal tumours is underestimated: results of a nation-wide study. Eur J Cancer. 41(18):2868–72.PubMedGoogle Scholar
  43. Gronchi, A., Fiore, M., et al. (2007). Surgery of residual disease following molecular-targeted therapy with imatinib mesylate in advanced/metastatic GIST. Ann Surg. 245(3):341–6.PubMedGoogle Scholar
  44. Heinrich, M.C., Blanke, C.D., et al. (2002). Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol. 20(6):1692–703.PubMedGoogle Scholar
  45. Heinrich, M.C., Corless, C.L., et al. (2003a). Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 21(23):4342–9.Google Scholar
  46. Heinrich, M.C., Corless, C.L., et al. (2003b). PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 299(5607):708–10.Google Scholar
  47. Heinrich, M.C., Griffith, D.J., et al. (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 96(3):925–32.PubMedGoogle Scholar
  48. Heinrich, M.C., Shoemaker, J.S., et al. (2005). Correlation of target kinase genotype with clinical activity of imatinib mesylate in patients with metastatic GI stromal tumors (GISTs) expressing KIT (KIT+). American Society of Clinical Oncology annual meeting. Abstr.Google Scholar
  49. Hirota, S., Isozaki, K., et al. (1998). Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 279(5350):577–80.PubMedGoogle Scholar
  50. Hirota, S., Nishida, T., et al. (2002). Familial gastrointestinal stromal tumors associated with dys- phagia and novel type germline mutation of KIT gene. Gastroenterology. 122(5):1493–9.PubMedGoogle Scholar
  51. Hirota, S., Ohashi, A., et al. (2003). Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology. 125(3):660–7.PubMedGoogle Scholar
  52. Isozaki, K., Terris, B., et al. (2000). Germline-activating mutation in the kinase domain of KIT gene in familial gastrointestinal stromal tumors. Am J Pathol. 157(5):1581–5.PubMedGoogle Scholar
  53. Joensuu, H., Roberts, P.J., et al. (2001). Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 344(14):1052–6.PubMedGoogle Scholar
  54. Kawanowa, K., Sakuma, Y., et al. (2006). High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum Pathol. 37(12):1527–35.PubMedGoogle Scholar
  55. Kindblom, L.G., Meis-Kindblom, J.M., et al. (2003). Incidence, prevalence, phenotype, and biologic spectrum of gastrointestinal stroma tumors (GIST): a population-based study [abstract]. Ann Oncol. 13:157.Google Scholar
  56. Kindblom, L.G., Remotti, H.E., et al. (1998). Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol. 152(5):1259–69.PubMedGoogle Scholar
  57. Kinoshita, K., Hirota, S., et al. (2004). Absence of c-kit gene mutations in gastrointestinal stromal tumours from neurofibromatosis type 1 patients. J Pathol. 202(1):80–5.PubMedGoogle Scholar
  58. Lasota, J., Jasinski, M., et al. (1999). Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomy-osarcomas. Am J Pathol. 154(1):53–60.PubMedGoogle Scholar
  59. Lewis, J.J., and Brennan, M.F. (1996). Soft tissue sarcomas. Curr Probl Surg. 33(10):817–72.PubMedGoogle Scholar
  60. Li, F.P., Fletcher, J.A., et al. (2005). Familial gastrointestinal stromal tumor ndrome: phenotypic and molecular features in a kindred. J Clin Oncol. 23(12):2735–43.PubMedGoogle Scholar
  61. Li, S.Q., O'Leary, T.J., et al. (2000). Analysis of KIT mutation and protein expression in fine needle aspirates of gastrointestinal stromal/smooth muscle tumors. Acta Cytol. 44(6):981–6.PubMedGoogle Scholar
  62. Maeyama, H., Hidaka, E., et al. (2001). Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology. 120(1):210–5.PubMedGoogle Scholar
  63. Maki, R.G. (2004). Gastrointestinal stromal tumors respond to tyrosine kinase-targeted therapy. Curr Treat Options Gastroenterol. 7(1):13–7.PubMedGoogle Scholar
  64. Martin, J., Poveda, A., et al. (2005). Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol. 23(25):6190–8.PubMedGoogle Scholar
  65. Mazur, M.T., and Clark, H.B. (1983). Gastric stromal tumors. Reappraisal of histogenesis. Am J Surg Pathol. 7(6):507–19.PubMedGoogle Scholar
  66. Medeiros, F., Corless, C.L., et al. (2004). KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol. 28(7):889–94.PubMedGoogle Scholar
  67. Mendel, D.B., Laird, A.D., et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 9(1):327–37.PubMedGoogle Scholar
  68. Miettinen, M., Fetsch, J.F., et al. (2006). Gastrointestinal stromal tumors in patients with neurofi-bromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol. 30(1):90–6.PubMedGoogle Scholar
  69. Miettinen, M., and Lasota, J. (2001). Gastrointestinal stromal tumors: definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch. 438(1):1–12.PubMedGoogle Scholar
  70. Miettinen, M., and Lasota, J. (2003). Gastrointestinal stromal tumors (GISTs): definition, occurrence, pathology, differential diagnosis and molecular genetics. Pol J Pathol. 54(1):3–24.PubMedGoogle Scholar
  71. Miettinen, M., and Lasota, J. (2006). Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol. 23(2):70–83.PubMedGoogle Scholar
  72. Miettinen, M., Majidi, M., et al. (2002). Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review. Eur J Cancer. 38(Suppl 5):S39–51.PubMedGoogle Scholar
  73. Ng, E.H., Pollock, R.E., et al. (1992). Prognostic implications of patterns of failure for gastrointestinal leiomyosarcomas. Cancer. 69(6):1334–41.PubMedGoogle Scholar
  74. Nilsson, B., Bumming, P., et al. (2005). Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era—a population based study in western Sweden. Cancer. 103(4):821–9.PubMedGoogle Scholar
  75. Nishida, T., Hirota, S., et al. (1998). Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet. 19(4):323–4.PubMedGoogle Scholar
  76. Nishida, T., and Hirota, S. (2000). Biological and clinical review of stromal tumors in the gastrointestinal tract. Histol Histopathol 15(4):1293–301.PubMedGoogle Scholar
  77. O'Farrell, A.M., Foran, J.M., et al. (2003). An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res. 9(15):5465–76.PubMedGoogle Scholar
  78. Otani, Y., Furukawa, T., et al. (2006). Operative indications for relatively small (2–5 cm) gastrointestinal stromal tumor of the stomach based on analysis of 60 operated cases. Surgery. 139(4):484–92.PubMedGoogle Scholar
  79. Perez, E.A., Livingstone, A.S., et al. (2006). Current incidence and outcomes of gastrointestinal mesenchymal tumors including gastrointestinal stromal tumors. J Am Coll Surg. 202(4):623–9.PubMedGoogle Scholar
  80. Rader, A.E., Avery, A., et al. (2001). Fine-needle aspiration biopsy diagnosis of gastrointestinal stromal tumors using morphology, immunocytochemistry, and mutational analysis of c-kit. Cancer. 93(4):269–75.PubMedGoogle Scholar
  81. Rankin, C., Vo n Mehren, M., et al. (2004). Dose effect of imatinib (IM) in patients with metastatis GIST—Phase III Sarcoma Group Study S0033. American Society of Clinical Oncology.Google Scholar
  82. Raut, C.P., Hornick, J.L., et al. (2006). Advanced gastrointestinal stromal tumor: potential benefits of aggressive surgery combined with targeted tyrosine kinase inhibitor therapy. Am J Hematol Oncol. In press.Google Scholar
  83. Raut, C.P., Posner, M., et al. (2006). Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J Clin Oncol. 24(15):2325–31.PubMedGoogle Scholar
  84. Roberts, P.J., and Eisenberg, B. (2002). Clinical presentation of gastrointestinal stromal tumors and treatment of operable disease. Eur J Cancer. 38(Suppl 5):S37–8.PubMedGoogle Scholar
  85. Robson, M.E., Glogowski, E., et al. (2004). Pleomorphic characteristics of a germ-line KIT mutation in a large kindred with gastrointestinal stromal tumors, hyperpigmentation, and dysphagia. Clin Cancer Res. 10(4):1250–4.PubMedGoogle Scholar
  86. Rossi, C.R., Mocellin, S., et al. (2003). Gastrointestinal stromal tumors: from a surgical to a molecular approach. Int J Cancer. 107(2):171–6.PubMedGoogle Scholar
  87. Rubin, B.P., Singer, S., et al. (2001). KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 61(22):8118–21.PubMedGoogle Scholar
  88. Rubio, J., Marcos-Gragera, R., et al. (2007). Population-based incidence and survival of gastrointestinal stromal tumours (GIST) in Girona, Spain. Eur J Cancer. 43(1):144–8.PubMedGoogle Scholar
  89. Rutkowski, P., Nowecki, Z., et al. (2006). Surgical treatment of patients with initially inoperable and/or metastatic gastrointestinal stromal tumors (GIST) during therapy with imatinib mesylate. J Surg Oncol. 93(4):304–11.PubMedGoogle Scholar
  90. Samiian, L., Weaver, M., et al. (2004). Evaluation of gastrointestinal stromal tumors for recurrence rates and patterns of long-term follow-up. Am Surg. 70(3):187–91; discussion 191–2.PubMedGoogle Scholar
  91. Savage, D.G., and Antman, K.H. (2002). Imatinib mesylate: a new oral targeted therapy. N Engl J Med. 346(9):683–93.PubMedGoogle Scholar
  92. Scaife, C.L., Hunt, K.K., et al. (2003). Is there a role for surgery in patients with unresectable cKIT+ gastrointestinal stromal tumors treated with imatinib mesylate? Am J Surg. 186(6):665–9.PubMedGoogle Scholar
  93. Schneider-Stock, R., Boltze, C., et al. (2003). High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J Clin Oncol. 21(9):1688–97.PubMedGoogle Scholar
  94. Schneider-Stock, R., Boltze, C., et al. (2005). Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res. 11(2 Pt 1):638–45.PubMedGoogle Scholar
  95. Shinomura, Y., Kinoshita, K., et al. (2005). Pathophysiology, diagnosis, and treatment of gastrointestinal stromal tumors. J Gastroenterol. 40(8):775–80.PubMedGoogle Scholar
  96. Singer, S., Rubin, B.P., et al. (2002). Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol. 20(18):3898–905.PubMedGoogle Scholar
  97. Takahashi, R., Tanaka, S., et al. (2003). Expression of vascular endothelial growth factor and angiogenesis in gastrointestinal stromal tumor of the stomach. Oncology. 64(3):266–74.PubMedGoogle Scholar
  98. Takazawa, Y., Sakurai, S., et al. (2005). Gastrointestinal stromal tumors of neurofibromatosis type I (von Recklinghausen's disease). Am J Surg Pathol. 29(6):755–63.PubMedGoogle Scholar
  99. Taniguchi, M., Nishida, T., et al. (1999). Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res. 59(17):4297–300.PubMedGoogle Scholar
  100. Tian, Q., Frierson, H.F., Jr., et al. (1999). Activating c-kit gene mutations in human germ cell tumors. Am J Pathol. 154(6):1643–7.PubMedGoogle Scholar
  101. Trent, J.C., Beach, J., et al. (2003). A two-arm phase II study of temozolomide in patients with advanced gastrointestinal stromal tumors and other soft tissue sarcomas. Cancer. 98(12):2693–9.PubMedGoogle Scholar
  102. Tryggvason, G., Gislason, H.G., et al. (2005). Gastrointestinal stromal tumors in Iceland, 1990–2003: the Icelandic GIST study, a population-based incidence and pathologic risk stratification study. Int J Cancer. 117(2):289–93.PubMedGoogle Scholar
  103. van den Abbeele, A.D., Badawi, R.D., et al. (2004). Effects of cessation of imatinib mesylate (IM) therapy in patients (pts) with IM-refractory gastrointestinal stromal tumors (GIST) as visualized by FDG-PET scanning. Proc Am Soc Clin Oncol. 23:198. Abstr. 3012.Google Scholar
  104. van der Zwan, S.M., and DeMatteo, R.P. (2005). Gastrointestinal stromal tumor: 5 years later. Cancer. 104(9):1781–8.PubMedGoogle Scholar
  105. van Oosterom, A.T., Judson, I., et al. (2001). Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet. 358(9291):1421–3.PubMedGoogle Scholar
  106. Verweij, J., Casali, P.G., et al. (2004). Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 364(9440):1127–34.PubMedGoogle Scholar
  107. Wakai, T., Kanda, T., et al. (2004). Late resistance to imatinib therapy in a metastatic gastrointestinal stromal tumour is associated with a second KIT mutation. Br J Cancer. 90(11):2059–61.PubMedGoogle Scholar
  108. Ward, S.M., Burns, A.J., et al. (1994). Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 480(Pt 1):91–7.PubMedGoogle Scholar
  109. Yan, H., Marchettini, P., et al. (2003). Prognostic assessment of gastrointestinal stromal tumor. Am J Clin Oncol. 26(3):221–8.PubMedGoogle Scholar
  110. Zalcberg, J.R., Verweij, J., et al. (2005). Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer. 41(12):1751–7.PubMedGoogle Scholar
  111. Zoller, M.E., Rembeck, B., et al. (1997). Malignant and benign tumors in patients with neurofi bromatosis type 1 in a defined Swedish population. Cancer. 79(11):2125–31.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Chandrajit P. Raut
    • 1
  • Jason L. Hornick
    • 2
  • Monica M. Bertagnolli
    • 3
  1. 1.Departments of Surgery and Pathology, Brigham & Women's Hospital, Center for Sarcoma and Bone OncologyDana-Farber Cancer Institute, and Harvard Medical SchoolBostonUSA
  2. 2.Brigham and Women's Hospital, Department of PathologyHarvard Medical School, Dana-Farber Cancer InstituteBostonUSA
  3. 3.Department of Surgery, Division of Surgical OncologyBrigham and Women's Hospital, Dana-Farber Cancer CenterBostonUSA

Personalised recommendations