Stromal Cells and Tumor Microenvironment

  • Andrea Varro


Cancer initiation is attributable to genetic mutations that confer dominance on cancer-producing stem cells over their normal counterparts (1). Mutations in epithelial cells that lead to cancer initiation and progression have been widely studied in the past decade or so (2). It has also been clear for some time that tumor survival and progression (including metastasis) depends on a microenvironment that is capable of supporting increased cell proliferation, migration and invasion, and decreased apoptosis, that together give advantage to transformed cancer cells compared with their nontransformed counterparts (1, 3, 4, 5, 6, 7, 8). The relevant microen-vironment is provided by the stroma, and consists of host cells that continually interact with cancer cells producing growth factors, proteases, protease inhibitors, cytokines, and extracellular matrix (ECM) proteins (9, 10, 11, 12).

At present, rather little is known of the differences that might occur between the stromal...


Gastric Cancer Hepatocyte Growth Factor Cancer Initiation Lymphatic Endothelial Cell Paracrine Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bhowmick, N.A., Neilson, E.G. and Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 432: 332–337, 2004.PubMedGoogle Scholar
  2. 2.
    Christofori, G. Cancer: division of labour. Nature 446: 735–736, 2007.PubMedGoogle Scholar
  3. 3.
    Mareel, M. and Leroy, A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 83: 337–376, 2003.PubMedGoogle Scholar
  4. 4.
    Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., Washington, M.K., Neilson, E.G. and Moses, H.L. TGF-beta signaling in fibroblasts modulates the onco-genic potential of adjacent epithelia. Science 303: 848–851, 2004.PubMedGoogle Scholar
  5. 5.
    Kalluri, R. and Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6: 392–401, 2006.PubMedGoogle Scholar
  6. 6.
    van Kempen, L.C., Rhee, J.S., Dehne, K., Lee, J., Edwards, D.R. and Coussens, L.M. Epithelial carcinogenesis: dynamic interplay between neoplastic cells and their microenviron-ment. Differentiation 70: 610–623, 2002.PubMedGoogle Scholar
  7. 7.
    Jodele, S., Blavier, L., Yoon, J.M. and DeClerck, Y.A. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 25: 35–43, 2006.PubMedGoogle Scholar
  8. 8.
    Liotta, L.A. and Kohn, E.C. The microenvironment of the tumour-host interface. Nature 411: 375–379, 2001.PubMedGoogle Scholar
  9. 9.
    Lippert, E., Falk, W., Bataille, F., Kaehne, T., Naumann, M., Goeke, M., Herfarth, H., Schoelmerich, J. and Rogler, G. Soluble galectin-3 is a strong, colonic epithelial-cell-derived, lamina propria fibroblast-stimulating factor. Gut 56: 43–51, 2007.PubMedGoogle Scholar
  10. 10.
    Orimo, A., Gupta, P.B., Sgroi, D.C., renzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V.J., Richardson, A.L. and Weinberg, R.A. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348, 2005.PubMedGoogle Scholar
  11. 11.
    Bierie, B. and Moses, H.L. Tumour microenvironment: TGFbeta—the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6: 506–520, 2006.PubMedGoogle Scholar
  12. 12.
    Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4: 540–550, 2004.PubMedGoogle Scholar
  13. 13.
    Lauwers, G.Y. and Shimizu, M. Pathology of gastric cancer. In: Rustgi, A.K., editor. Gastrointestinal cancers. Saunders: Edinburgh; pp. 321–330, 2003.Google Scholar
  14. 14.
    Hirota, S., Isozaki, K., Moriyama, Y., Hashimoto, K., Nishida, T., Ishiguro, S., Kawano, K., Hanada, M., Kurata, A., Takeda, M., Muhammad, T.G., Matsuzawa, Y., Kanakura, Y., Shinomura, Y. and Kitamura, Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580, 1998.PubMedGoogle Scholar
  15. 15.
    Heinrich, M.C., Corless, C.L., Duensing, A., McGreevey, L., Chen, C.J., Joseph, N., Singer, S., Griffith, D.J., Haley, A., Town, A., Demetri, G.D., Fletcher, C.D. and Fletcher, J.A. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299: 708–710, 2003.PubMedGoogle Scholar
  16. 16.
    Powell, D.W., Adegboyega, P.A., Di Mari, J.F. and Mifflin, R.C. Epithelial cells and their neighbors. I. Role of intestinal myofibroblasts in development, repair, and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 289: G2–G7, 2005.PubMedGoogle Scholar
  17. 17.
    Schmidt, D.R. and Kao, W.J. The interrelated role of fibronectin and interleukin-1 in biomate-rial-modulated macrophage function. Biomaterials 28: 371–382, 2007.PubMedGoogle Scholar
  18. 18.
    Bissell, M.J., Radisky, D.C., Rizki, A., Weaver, V.M. and Petersen, O.W. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70: 537–546, 2002.PubMedGoogle Scholar
  19. 19.
    Radisky, D., Muschler, J. and Bissell, M.J. Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Invest. 20: 139–153, 2002.PubMedGoogle Scholar
  20. 20.
    Ronnov-Jessen, L., Petersen, O.W., Koteliansky, V.E. and Bissell, M.J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95: 859–873, 1995.PubMedGoogle Scholar
  21. 21.
    Roskelley, C.D. and Bissell, M.J. The dominance of the microenvironment in breast and ovarian cancer. Semin. Cancer Biol. 12: 97–104, 2002.PubMedGoogle Scholar
  22. 22.
    Adams, R.H. and Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8: 464–478, 2007.PubMedGoogle Scholar
  23. 23.
    Plate, K. From angiogenesis to lymphangiogenesis. Nat. Med. 7: 151–152, 2001.PubMedGoogle Scholar
  24. 24.
    Yonemura, Y., Fushida, S., Bando, E., Kinoshita, K., Miwa, K., Endo, Y., Sugiyama, K., Partanen, T., Yamamoto, H. and Sasaki, T. Lymphangiogenesis and the vascular endothelial growth factor receptor (VEGFR)-3 in gastric cancer. Eur. J. Cancer 37: 918–923, 2001.PubMedGoogle Scholar
  25. 25.
    Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R.K. and McDonald, D.M. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160: 985–1000, 2002.PubMedGoogle Scholar
  26. 26.
    Lindahl, P., Johansson, B.R., Leveen, P. and Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277: 242–245, 1997.PubMedGoogle Scholar
  27. 27.
    Chen, S. and Lechleider, R.J. Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ. Res. 94: 1195–1202, 2004.PubMedGoogle Scholar
  28. 28.
    Enarsson, K., Johnsson, E., Lindholm, C., Lundgren, A., Pan-Hammarstrom, Q., Stromberg, E., Bergin, P., Baunge, E.L., Svennerholm, A.M. and Quiding-Jarbrink, M. Differential mechanisms for T lymphocyte recruitment in normal and neoplastic human gastric mucosa. Clin. Immunol. 118: 24–34, 2006.PubMedGoogle Scholar
  29. 29.
    Guruge, J.L., Falk, P.G., Lorenz, R.G., Dans, M., Wirth, H.P., Blaser, M.J., Berg, D.E. and Gordon, J.I. Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc. Natl. Acad. Sci. U.S.A. 95: 3925–3930, 1998.PubMedGoogle Scholar
  30. 30.
    Bodger, K., Ahmed, S., Michael, A., Khan, A.L., Pazmany, L., Pritchard, D.M., Dimaline, R., Dockray, G.J. and Varro, A. Altered gastric corpus expression of tissue inhibitors of metallo-proteinases in human and murine Helicobacter infection. J. Clin. Pathol. 61: 72–28, 2007.PubMedGoogle Scholar
  31. 31.
    Mahida, Y.R., Galvin, A.M., Gray, T., Makh, S., McAlindon, M.E., Sewell, H.F. and Podolsky, D.K. Migration of human intestinal lamina propria lymphocytes, macrophages and eosinophils following the loss of surface epithelial cells. Clin. Exp. Immunol. 109: 377–386, 1997.PubMedGoogle Scholar
  32. 32.
    Fukuda, Y., Ishizaki, M., Kudoh, S., Kitaichi, M. and Yamanaka, N. Localization of matrix metalloproteinases-1, −2, and −9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab. Invest. 78: 687–698, 1998.PubMedGoogle Scholar
  33. 33.
    Sala, A. and Folco, G. Neutrophils, endothelial cells, and cysteinyl leukotrienes: a new approach to neutrophil-dependent inflammation? Biochem. Biophys. Res. Commun. 283: 1003–1006, 2001.PubMedGoogle Scholar
  34. 34.
    Duluc, D., Delneste, Y., Tan, F., Moles, M.P., Grimaud, L., Lenoir, J., Preisser, L., Anegon, I., Catala, L., Ifrah, N., Descamps, P., Gamelin, E., Gascan, H., Hebbar, M. and Jeannin, P. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated-macrophage-like cells. Blood 110: 4319–4330, 2007.PubMedGoogle Scholar
  35. 35.
    Gerard, C. and Rollins, B.J. Chemokines and disease. Nat. Immunol. 2: 108–115, 2001.PubMedGoogle Scholar
  36. 36.
    Porta, C., Subhra, K.B., Larghi, P., Rubino, L., Mancino, A. and Sica, A. Tumor promotion by tumor-associated macrophages. Adv. Exp. Med. Biol. 604: 67–86, 2007.PubMedGoogle Scholar
  37. 37.
    Sica, A., Rubino, L., Mancino, A., Larghi, P., Porta, C., Rimoldi, M., Solinas, G., Locati, M., Allavena, P. and Mantovani, A. Targeting tumour-associated macrophages. Expert. Opin. Ther. Targets 11: 1219–1229, 2007.PubMedGoogle Scholar
  38. 38.
    Nakagawa, J., Saio, M., Tamakawa, N., Suwa, T., Frey, A.B., Nonaka, K., Umemura, N., Imai, H., Ouyang, G.F., Ohe, N., Yano, H., Yoshimura, S., Iwama, T. and Takami, T. TNF expressed by tumor-associated macrophages, but not microglia, can eliminate glioma. Int. J. Oncol. 30: 803–811, 2007.PubMedGoogle Scholar
  39. 39.
    Nazareth, M.R., Broderick, L., Simpson-Abelson, M.R., Kelleher, R.J., Jr., Yokota, S.J. and Bankert, R.B. Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J. Immunol. 178: 5552–5562, 2007.PubMedGoogle Scholar
  40. 40.
    De, W.O. and Mareel, M. Role of myofibroblasts at the invasion front. Biol. Chem. 383: 55–67, 2002.Google Scholar
  41. 41.
    Adegboyega, P.A., Mifflin, R.C., DiMari, J.F., Saada, J.I. and Powell, D.W. Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps. Arch. Pathol. Lab. Med. 126: 829–836, 2002.PubMedGoogle Scholar
  42. 42.
    Desmouliere, A., Darby, I.A. and Gabbiani, G. Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab. Invest. 83: 1689–1707, 2003.PubMedGoogle Scholar
  43. 43.
    Gabbiani, G. The cellular derivation and the life span of the myofibroblast. Pathol. Res. Pract. 192: 708–711, 1996.PubMedGoogle Scholar
  44. 44.
    Powell, D.W., Mifflin, R.C., Valentich, J.D., Crowe, S.E., Saada, J.I. and West, A.B. Myofibroblasts. I. Paracrine cells important in health and disease. Am. J. Physiol. 277: C1–C9, 1999.PubMedGoogle Scholar
  45. 45.
    Eyden, B. The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part 1—normal and reactive cells. J. Submicrosc. Cytol. Pathol. 37: 109–204, 2005.PubMedGoogle Scholar
  46. 46.
    Eyden, B. The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. Part 2—tumours and tumour-like lesions. J. Submicrosc. Cytol. Pathol. 37: 231–296, 2005.PubMedGoogle Scholar
  47. 47.
    Powell, D.W., Mifflin, R.C., Valentich, J.D., Crowe, S.E., Saada, J.I. and West, A.B. Myofibroblasts.II. Intestinal subepithelial myofibroblasts. Am. J. Physiol. 277: C183–C201, 1999.PubMedGoogle Scholar
  48. 48.
    Wu, K.C., Jackson, L.M., Galvin, A.M., Gray, T., Hawkey, C.J. and Mahida, Y.R. Phenotypic and functional characterisation of myofibroblasts, macrophages, and lymphocytes migrating out of the human gastric lamina propria following the loss of epithelial cells. Gut 44: 323–330, 1999.PubMedGoogle Scholar
  49. 49.
    Valentich, J.D., Popov, V., Saada, J.I. and Powell, D.W. Phenotypic characterization of an intestinal subepithelial myofibroblast cell line. Am. J. Physiol. 272: C1513–C1524, 1997.PubMedGoogle Scholar
  50. 50.
    Mutoh, H., Sakurai, S., Satoh, K., Osawa, H., Tomiyama, T., Kita, H., Yoshida, T., Tamada, K., Yamamoto, H., Isoda, N., Ido, K. and Sugano, K. Pericryptal fibroblast sheath in intestinal metaplasia and gastric carcinoma. Gut 54: 33–39, 2005.PubMedGoogle Scholar
  51. 51.
    McKaig, B.C., Makh, S.S., Hawkey, C.J., Podolsky, D.K. and Mahida, Y.R. Normal human colonic subepithelial myofibroblasts enhance epithelial migration (restitution) via TGF-beta3. Am. J. Physiol. 276: G1087–G1093, 1999.PubMedGoogle Scholar
  52. 52.
    Beltinger, J., McKaig, B.C., Makh, S., Stack, W.A., Hawkey, C.J. and Mahida, Y.R. Human colonic subepithelial myofibroblasts modulate transepithelial resistance and secretory response. Am. J. Physiol. 277: C271–C279, 1999.PubMedGoogle Scholar
  53. 53.
    McCaig, C., Duval, C., Hemers, E., Steele, I., Pritchard, D.M., Przemeck, S., Dimaline, R., Ahmed, S., Bodger, K., Kerrigan, D.D., Wang, T.C., Dockray, G.J. and Varro, A. The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology 130: 1754–1763, 2006.PubMedGoogle Scholar
  54. 54.
    Andoh, A., Bamba, S., Brittan, M., Fujiyama, Y. and Wright, N.A. Role of intestinal subepi-thelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacol. Ther. 114: 94–106, 2007.PubMedGoogle Scholar
  55. 55.
    Mahida, Y.R., Beltinger, J., Makh, S., Goke, M., Gray, T., Podolsky, D.K. and Hawkey, C.J. Adult human colonic subepithelial myofibroblasts express extracellular matrix proteins and cyclooxygenase-1 and -2. Am. J. Physiol. 273: G1341–G1348, 1997.PubMedGoogle Scholar
  56. 56.
    Rajkumar, V.S., Howell, K., Csiszar, K., Denton, C.P., Black, C.M. and Abraham, D.J. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res. Ther. 7: R1113–R1123, 2005.PubMedGoogle Scholar
  57. 57.
    Direkze, N.C., Forbes, S.J., Brittan, M., Hunt, T., Jeffery, R., Preston, S.L., Poulsom, R., Hodivala-Dilke, K., Alison, M.R. and Wright, N.A. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 21: 514–520, 2003.PubMedGoogle Scholar
  58. 58.
    Marsh, M.N. and Trier, J.S. Morphology and cell proliferation of subepithelial fibroblasts in adult mouse jejunum. I. Structural features. Gastroenterology 67: 622–635, 1974.PubMedGoogle Scholar
  59. 59.
    Nishida, T., Tsuji, S., Kimura, A., Tsujii, M., Ishii, S., Yoshio, T., Shinzaki, S., Egawa, S., Irie, T., Yasumaru, M., Iijima, H., Murata, H., Kawano, S. and Hayashi, N. Endothelin-1, an ulcer inducer, promotes gastric ulcer healing via mobilizing gastric myofibroblasts and stimulates production of stroma-derived factors. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G1041–G1050, 2006.Google Scholar
  60. 60.
    Otte, J.M., Rosenberg, I.M. and Podolsky, D.K. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 124: 1866–1878, 2003.PubMedGoogle Scholar
  61. 61.
    Jackson, L.M., Wu, K.C., Mahida, Y.R., Jenkins, D. and Hawkey, C.J. Cyclooxygenase (COX) 1 and 2 in normal, inflamed, and ulcerated human gastric mucosa. Gut 47: 762–770, 2000.PubMedGoogle Scholar
  62. 62.
    Seymour, M.L., Zaidi, N.F., Hollenberg, M.D. and MacNaughton, W.K. PAR1-dependent and independent increases in COX-2 and PGE2 in human colonic myofibroblasts stimulated by thrombin. Am. J. Physiol. Cell Physiol. 284: C1185–C1192, 2003.PubMedGoogle Scholar
  63. 63.
    Andoh, A., Bamba, S., Brittan, M., Fujiyama, Y. and Wright, N.A. Role of intestinal subepi-thelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacol. Ther. 114: 94–106, 2007.PubMedGoogle Scholar
  64. 64.
    Hemers, E., Duval, C., McCaig, C., Handley, M., Dockray, G.J. and Varro, A. Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: implications for epithelial-mesenchymal signaling. Cancer Res. 65: 7363–7369, 2005.PubMedGoogle Scholar
  65. 65.
    Varro, A., Kenny, S., Hemers, E., McCaig, C., Przemeck, S., Wang, T.C., Bodger, K. and Pritchard, D.M. Increased gastric expression of MMP-7 in hypergastrinemia and significance for epithelial-mesenchymal signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 292: G1133–G1140, 2007.PubMedGoogle Scholar
  66. 66.
    Anastasiadis, P.Z., Moon, S.Y., Thoreson, M.A., Mariner, D.J., Crawford, H.C., Zheng, Y. and Reynolds, A.B. Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2: 637–644, 2000.PubMedGoogle Scholar
  67. 67.
    Nakayama, H., Enzan, H., Miyazaki, E. and Toi, M. Alpha smooth muscle actin positive stro-mal cells in gastric carcinoma. J. Clin. Pathol. 55: 741–744, 2002.PubMedGoogle Scholar
  68. 68.
    Orimo, A. and Weinberg, R.A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5: 1597–1601, 2006.PubMedGoogle Scholar
  69. 69.
    Aghi, M., Cohen, K.S., Klein, R.J., Scadden, D.T. and Chiocca, E.A. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res. 66: 9054–9064, 2006.PubMedGoogle Scholar
  70. 70.
    Coussens, L.M. and Werb, Z. Inflammation and cancer. Nature 420: 860–867, 2002.PubMedGoogle Scholar
  71. 71.
    Stoeltzing, O., McCarty, M.F., Wey, J.S., Fan, F., Liu, W., Belcheva, A., Bucana, C.D., Semenza, G.L. and Ellis, L.M. Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J. Natl. Cancer Inst., 96: 946–956, 2004.PubMedGoogle Scholar
  72. 72.
    Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y. and Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U.S.A. 98: 12072–12077, 2001.PubMedGoogle Scholar
  73. 73.
    Balkwill, F. and Coussens, L.M. Cancer: an inflammatory link. Nature 431: 405–406, 2004.PubMedGoogle Scholar
  74. 74.
    Yashiro, M., Nakazawa, K., Tendo, M., Kosaka, K., Shinto, O. and Hirakawa, K. Selective cyclooxygenase-2 inhibitor downregulates the paracrine epithelial-mesenchymal interactions of growth in scirrhous gastric carcinoma. Int. J. Cancer 120: 686–693, 2007.PubMedGoogle Scholar
  75. 75.
    Overall, C.M. and Dean, R.A. Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev. 25: 69–75, 2006.PubMedGoogle Scholar
  76. 76.
    Gupta, G.P., Nguyen, D.X., Chiang, A.C., Bos, P.D., Kim, J.Y., Nadal, C., Gomis, R.R., Manova-Todorova, K. and Massague, J. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446: 765–770, 2007.PubMedGoogle Scholar
  77. 77.
    Albini, A. and Sporn, M.B. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer 7: 139–147, 2007.PubMedGoogle Scholar
  78. 78.
    Barcellos-Hoff, M.H., Park, C. and Wright, E.G. Radiation and the microenvironment— tumorigenesis and therapy. Nat. Rev. Cancer 5: 867–875, 2005.PubMedGoogle Scholar
  79. 79.
    Coussens, L.M., Fingleton, B. and Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295: 2387–2392, 2002.PubMedGoogle Scholar
  80. 80.
    Rhee, J.S. and Coussens, L.M. RECKing MMP function: implications for cancer development. Trends Cell Biol. 12: 209–211, 2002.PubMedGoogle Scholar
  81. 81.
    Overall, C.M. and Kleifeld, O. Tumour microenvironment—opinion: validating matrix met-alloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6: 227–239, 2006.PubMedGoogle Scholar
  82. 82.
    Mareel, M. and Madani, I. Tumour-associated host cells participating at invasion and metastasis : targets for therapy? Acta Chir. Belg. 106: 635–640, 2006.PubMedGoogle Scholar
  83. 83.
    Lazzeri, E. and Romagnani, P. CXCR3-binding chemokines: novel multifunctional therapeutic targets. Curr. Drug Targets Immune Endocr. Metab. Disord. 5: 109–118, 2005.Google Scholar
  84. 84.
    Furuya, M., Nishiyama, M., Kasuya, Y., Kimura, S. and Ishikura, H. Pathophysiology of tumor neovascularization. Vasc. Health Risk Manag. 1: 277–290, 2005.Google Scholar
  85. 85.
    Baselga, J. Targeting tyrosine kinases in cancer: the second wave. Science 312: 1175–1178, 2006.PubMedGoogle Scholar
  86. 86.
    Offersen, B.V., Nielsen, B.S., Hoyer-Hansen, G., Rank, F., Hamilton-Dutoit, S., Overgaard, J. and Andreasen, P.A. The myofibroblast is the predominant plasminogen activator inhibitor-1-expressing cell type in human breast carcinomas. Am. J. Pathol. 163: 1887–1899, 2003.PubMedGoogle Scholar
  87. 87.
    Selman, M., Ruiz, V., Cabrera, S., Segura, L., Ramirez, R., Barrios, R. and Pardo, A. TIMP-1, −2, −3, and −4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenviron-ment? Am. J. Physiol. Lung Cell Mol. Physiol. 279: L562–L574, 2000.PubMedGoogle Scholar
  88. 88.
    Powers, C.J., McLeskey, S.W. and Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7: 165–197, 2000.Google Scholar
  89. 89.
    Bonner, J.C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 15: 255–273, 2004.PubMedGoogle Scholar
  90. 90.
    Seymour, M.L., Binion, D.G., Compton, S.J., Hollenberg, M.D. and MacNaughton, W.K. Expression of proteinase-activated receptor 2 on human primary gastrointestinal myofibrob-lasts and stimulation of prostaglandin synthesis. Can. J. Physiol. Pharmacol. 83: 605–616, 2005.PubMedGoogle Scholar
  91. 91.
    Mifflin, R.C., Saada, J.I., Di Mari, J.F., Adegboyega, P.A., Valentich, J.D. and Powell, D.W. Regulation of COX-2 expression in human intestinal myofibroblasts: mechanisms of IL-1-mediated induction. Am. J. Physiol. Cell Physiol. 282: C824–C834, 2002.PubMedGoogle Scholar
  92. 92.
    McKaig, B.C., McWilliams, D., Watson, S.A. and Mahida, Y.R. Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibrob-lasts in inflammatory bowel disease. Am. J. Pathol. 162: 1355–1360, 2003.PubMedGoogle Scholar
  93. 93.
    Flemstrom, G. and Sjoblom, M. Epithelial cells and their neighbors. II. New perspectives on efferent signaling between brain, neuroendocrine cells, and gut epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 289: G377–G380, 2005.PubMedGoogle Scholar
  94. 94.
    Varga, J. and Abraham, D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117: 557–567, 2007.PubMedGoogle Scholar
  95. 95.
    Iredale, J.P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117: 539–548, 2007.PubMedGoogle Scholar
  96. 96.
    Lawson, W.E., Polosukhin, V.V., Zoia, O., Stathopoulos, G.T., Han, W., Plieth, D., Loyd, J.E., Neilson, E.G. and Blackwell, T.S. Characterization of fibroblast-specific protein 1 in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 171: 899–907, 2005.PubMedGoogle Scholar
  97. 97.
    Kuijper, S., Turner, C.J. and Adams, R.H. Regulation of angiogenesis by eph-ephrin interactions. Trends Cardiovasc. Med. 17: 145–151, 2007.PubMedGoogle Scholar
  98. 98.
    Arora, P., Ricks, T.K. and Trejo, J. Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J. Cell Sci. 120: 921–928, 2007.PubMedGoogle Scholar
  99. 99.
    Edelman, D.A., Jiang, Y., Tyburski, J.G., Wilson, R.F. and Steffes, C.P. Cytokine production in lipopolysaccharide-exposed rat lung pericytes. J. Trauma 62: 89–93, 2007.PubMedGoogle Scholar
  100. 100.
    Kane, R., Stevenson, L., Godson, C., Stitt, A.W. and O'Brien, C. Gremlin gene expression in bovine retinal pericytes exposed to elevated glucose. Br. J. Ophthalmol. 89: 1638–1642, 2005.PubMedGoogle Scholar
  101. 101.
    Marino, A.P., da, S.A., dos, S.P., Pinto, L.M., Gazzinelli, R.T., Teixeira, M.M. and Lannes-Vieira, J. Regulated on activation, normal T cell expressed and secreted (RANTES) antagonist (Met-RANTES) controls the early phase of trypanosoma cruzi-elicited myocarditis. Circulation 110: 1443–1449, 2004.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Andrea Varro
    • 1
  1. 1.Department of Physiology, School of Biomedical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations